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Abstract. The viscous and inviscid aggregation equation with Newtonian potential mod-
els a number of different physical systems and has close analogs in 2D incompressible fluid
mechanics. We consider a slight generalization of these equations in the whole space es-
tablishing well-posedness of the viscous and inviscid equations, spatial decay of the viscous
solutions, and the convergence of viscous solutions to the inviscid solution as the viscosity
goes to zero.
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1. Introduction

In this work we study on Rd, d ≥ 2, the (viscous or inviscid) aggregation equation with
Newtonian potential,

(AGν)

 ∂tρ
ν + div(ρνvν) = ν∆ρν ,

vν = −∇Φ ∗ ρν ,
ρν(0) = ρ0.

Here, ν ≥ 0 is the viscosity and Φ is the fundamental solution of the Laplacian, or Newtonian
potential (so ∆Φ = δ and div vν = −ρν). The density is ρν , the velocity is vν , and ρ0 is the
initial density.

Many variations on these equations are considered in the literature, primarily by using
potentials other than the Newtonian or by using more general diffusive terms. We restrict
our attention to the Newtonian potential with linear diffusion, for we will be concerned with
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analyzing the viscous (ν > 0) and inviscid (ν = 0) aggregation equation using techniques
adapted from the study of 2D fluid mechanics.

The aggregation equation models numerous physical problems. For the Newtonian poten-
tial, as in (AGν), this includes chemotaxis, where (AGν) for ν > 0 is a limiting case of the
Keller-Segel system (see Section 5.2 of [23]) and has been extensively studied. In this context,
ρν measures the density of cells (bacteria or cancer cells, for instance) and vν is the gradient
of the concentration of a chemoattractant. References most closely related to the approach
to the aggregation equation taken in this paper include [2, 3, 4, 15, 16, 22, 23].

We will, in fact, consider a slightly more general set of equations of the form

(GAGν)

 ∂tρ
ν + vν · ∇ρν = σ2(ρ

ν)2 + ν∆ρν ,
vν = σ1∇Φ ∗ ρν ,
ρν(0) = ρ0,

where σ1, σ2 are constants with σ1 6= 0. When σ1 = −1, σ2 = 1, (GAGν) reduces to (AGν)
since then div(ρνvν) = vν · ∇ρν + div vνρν = vν · ∇ρν − (ρν)2.

The special case σ1 = 1, σ2 = −1 has been used to model type-II superconductivity when
ν = 0 (see [22] and the references therein). In such applications, ρ0 is not assumed to have
a distinguished sign, so there is no real difference between studying σ1 = −1, σ2 = 1 and
σ1 = 1, σ2 = −1.

At least one other special case of (GAGν) has been studied in the literature: (GAG0) with
σ1 = −1, σ2 = 0 are derived from (AG0) by making a transformation of variables in (1.6)
of [2]. This transformation applies only in the special case of aggregation patch initial data
(analogous to a vortex patch for fluids) for (AG0). Although this transformation only works
for aggregation patch initial data the authors of [2] go on to use this special case of (GAG0)
throughout their analysis of aggregation patches. A general well-posedness result is not
needed in [2] and hence not established there, but such a result was one of our motivations
for studying (GAGν), the parameters σ1, σ2 merely interpolating between (AG0) and the
equations studied in [2] (when ν = 0).

We will study (GAGν) in all of Rd, but we note that much of what we find extends
naturally to a bounded domain if, as is typically done, one uses no-flux boundary conditions,
∇ρν · n = 0. This is because such boundary conditions eliminate all troublesome boundary
integrals. The situation is the same for 2D incompressible fluids using no-flux conditions on
the vorticity, though for fluids such conditions have no real physical meaning.

We will find establishing the existence of weak viscous solutions to (GAGν) no more difficult
than doing the same for (AGν) except for keeping track of the constants σ1 and σ2. In most
applications compact support of the initial density would suffice, but such compact support
is not conserved for viscous solutions. We will find that density having spatial decay of a
specific type is conserved, however, and we will find it convenient to work in a space having
such decay. Roughly speaking, this space, which we call L2

N (see Definition 2.1), consists of
L2 densities having sufficiently rapid algebraic decay at infinity.

In outline, our proof of existence of solutions to (GAGν) proceeds as follows. We first
define in Section 2 the spaces L2

N and H1
N in analogy with L2(Rd) and H1(Rd) and prove

that H1
N is compactly embedded in L2

M for all M < N . We show existence of solutions to a
linearized version of (GAGν) in Section 3 using an abstract functional analytic approach due
to J.-L. Lions. We expend most of our effort showing that such solutions lie in L2

N ∩ L∞ for
all time and then obtaining bounds over time on all Lp norms of the density that are uniform
in viscosity. In Section 4 we use a sequence of these linearized solutions to approximate a
solution to the viscous aggregation equation taking advantage of the compact embedding of
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H1
N in L2

M to obtain a solution via a compactness argument. (We address uniqueness of
solutions only later in Theorem 7.5.)

Our viscous existence results suit our needs in later sections when we examine the vanishing
viscosity limit; in particular, we need uniform-in-viscosity bounds on Lp-norms of the density
and on the time of existence of solutions to obtain the limit. Much more is known, however,
about the existence time of solutions and how it relates to the initial mass of the density,
at least for (AGν) for nonnegative ρ0 (as summarized in Sections 5.2, 5.3 of [23]). See also
the proof of existence of global-in-time renormalized solutions to (GAGν) for the special case
σ1 = 1, σ2 = −1 in [22] assuming only that ρ0 ∈ L1.

We return in Section 5 to the well-posedness of weak solutions to the generalized inviscid
aggregation equation. We adapt the approach of Marchioro and Pulvirenti in [21] (which
originates in their earlier text [20]) to prove existence and uniqueness of Lagrangian solutions
to the 2D Euler equations, combining it with some ideas from Chapter 8 of Majda and
Bertozzi’s [19]. Marchioro and Pulvirenti’s argument is both economical and elegant, but
both of these virtues are impacted by the need to handle non-divergence free vector fields.
Fundamentally, this is because the Jacobian of the transformation induced by the flow map is
no longer 1 but involves ρ0. This introduces into the argument new terms that require us to
assume some regularity of the initial density. Only after proving existence with such regularity
can a limiting argument be made to treat initial densities lying in L2

N ∩ L∞. (Our proofs
of existence and uniqueness are simplified by adding the assumption that ρ0 is compactly
supported.) We will also adapt Marchioro and Pulvirenti’s approach to establishing higher
regularity of inviscid solutions, as their approach translates with only minor difficulties to
non-divergence free vector fields.

The varying effects of σ1 and σ2 begin to become apparent in Section 6 when we examine
the behavior of the total mass of the density, m(ρν) :=

∫
Rd ρ

ν . We will find that m(ρν) is
conserved only when σ1 +σ2 = 0. The mass is particularly important in 2D where the energy
of the solutions is infinite. The lack of finite energy was no real obstacle for studying weak
solutions because only the L∞ norm of the velocity played a role in the estimates. But when
treating uniqueness of regular viscous solutions and proving that the vanishing viscosity limit
holds, the L2 norm of the velocity play an important role.

As is the case with the 3D Navier-Stokes equations, the uniqueness of weak solutions is an
open problem: we will content ourselves with proving uniqueness of solutions having sufficient
regularity. Even for regular solutions uniqueness is not a simple matter, for one needs to
control both the density and velocity of the difference between two solutions. Uniqueness
will follow, however, from the vanishing viscosity arguments we make beginning in Section 7,
where we show that

(V V ) : vν → v0 in L∞(0, T ;H1), ρν → ρ0 in L∞(0, T ;L2) as ν → 0

for a T > 0 as stated in Theorem 4.5. When d = 3, vν and v0 both lie in L2(Rd). This is no
longer (in general) the case when d = 2. When σ1 + σ2 = 0, however, because the total mass
of the densities ρν and ρ0 are conserved over time, the infinite parts of the energies cancel,
giving vν − v0 ∈ L2(R2). In both of the cases d ≥ 3 or d = 2 with σ1 + σ2 = 0 (V V ) holds,
as we show in Section 7.

In Section 8 we consider the remaining case where d = 2 but σ1 + σ2 6= 0. In this case the
total mass of the densities are not conserved over time and the infinite parts of the energies
do not cancel. We will nonetheless be able to isolate the infinite parts of the energy and use
them to define a spatially smooth corrector θν that lies in weak-L2 and all higher Lp spaces
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and show that in place of (V V ) we have

(V V )′ : vν − v0 − θν → 0 in L∞(0, T ;H1), ρν → ρ0 in L∞(0, T ;L2) as ν → 0,

θν → 0 in L∞(0, T ;Ck) for all k ≥ 0.

As can be seen from (V V ), (V V )′ both the velocity and density converge strongly in the
vanishing viscosity limit. Indeed, the arguments in Sections 7 and 8 involve showing the
simultaneous convergence of both the velocities and the densities.

In Section 9 we use the results from Sections 7 and 8 along with uniform bounds in viscosity
on Hölder norms of solutions to (GAGν) to prove that the vanishing viscosity limit holds in
the L∞-norm of the density for more regular initial data. In Section 10 we make some
concluding remarks.

We follow the convention that ‖·‖ = ‖·‖L2(Rd). We write 〈·, ·〉 for the L2-inner product and

(·, ·) for the pairing in the duality between H1(Rd) and H−1(Rd).
We make the convention that C stands for an unspecified positive constant that is inde-

pendent of any significant parameters. Its value may vary from expression to expression.
If its explicit dependence upon certain parameters is significant we write C(a1, . . . , an). In
particular,

C0(t) is a positive, continuous, nondecreasing function of t ∈ [0,∞).

We will find various uses for the following cutoff function:

Definition 1.1. Let a be a radially symmetric function in C∞(Rd) taking values in [0, 1],
supported in B2(0) with a ≡ 1 on B1(0) and with a(x) nonincreasing in |x|. For any R ≥ 1
define aR(·) = a(·/R). Note that aR(x) is nondecreasing in R for any fixed x ∈ Rd. We also
define bR(x) = a2R(x)−aR(x) ≥ 0, noting that bR is supported on the annulus of inner, outer
radii R, 4R.

For any p1, p2 ∈ [1,∞], p1 6= p2, we define ‖f‖Lp1∩Lp2 = ‖f‖Lp1 + ‖f‖Lp2 for the Banach
space Lp1 ∩ Lp2 .

If a displayed equation with equation number (m.n) consists of multiple equalities then
(m.n)k refers to the k-th equality in the equations. For example, (4.3)2 refers to the equation
vn = σ1∇Φ ∗ ρn−1.

We will use many times the following simple form of a classical result:

Lemma 1.2 (Grönwall’s inequality). Fix T > 0. Let L, α, and β be nonnegative continuous
functions on the interval [0, T ] with α non-decreasing and assume that M ∈ L1((0, T )). If

L(t) +

∫ t

0
M(s) ds ≤ α(t) +

∫ t

0
β(s)L(s) ds for all t ∈ [0, T ]

then

L(t) +

∫ t

0
M(s) ds ≤ α(t) exp

∫ t

0
β(s) ds for all t ∈ [0, T ].

2. Measuring persistence of spatial decay

The main issue we will face in obtaining weak solutions to (GAGν) is not regularity, which
can be dealt with in a very classical manner, but rather spatial decay. The difficulty is that
even if we assume compact support of the initial density—as we will in Theorem 5.7 for the
inviscid solutions—diffusion ensures that compact support is lost for all positive time. We will
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find, however, that algebraic spatial decay as characterized by the space L2
N of Definition 2.1

will persist. We explore in this section key properties of this space that we will use in the
following sections.

Definition 2.1. Fix a real number N ≥ 0, let p ∈ [1,∞], and let a, bR be as in Definition 1.1.

For any integer k ≥ 0, define the function space W k,p
N (Rd) to be the subspace of W k,p(Rd)

with the norm,

‖f‖
Wk,p
N (Rd) := ‖af‖Wk,p(Rd) + sup

R≥1
RN ‖bRf‖Wk,p(Rd) .

Let Hk
N (Rd) := W k,2

N (Rd), LpN (Rd) := W 0,p
N (Rd).

Lemma 2.2. Each of the following holds for all d ≥ 2:

(1) Fix q ∈ [1, 2] and let nq = d2−q
2q . If f ∈ L2

N (Rd) for some N > nq then f ∈ Lq(Rd)
with ‖f‖Lq ≤ C ‖f‖L2

N
, f ∈ LqN−nq(R

d) with ‖f‖LqN−nq ≤ C ‖f‖L2
N

, and

‖(1− aR)f‖Lq ≤ CR
−(N−nq) ‖f‖L2

N
for all R ≥ 1. (2.1)

(2) We have,

‖∇Φ ∗ f‖LL ≤ C ‖f‖L1∩L∞ ≤ C ‖f‖L2
N∩L∞

, (2.2)

the first inequality holding for all f ∈ L1∩L∞, the second holding for all f ∈ L2
N ∩L∞

for some N > d/2. In (2.2), LL = LL(Rd) is the space of bounded log-Lipschitz vector
fields with

‖g‖LL := ‖g‖L∞ + sup

{
|g(x)− g(y)|

−|x− y| log|x− y|
: x, y ∈ Rd, 0 < |x− y| ≤ e−1

}
.

(3) For any p ∈ (d/(d− 1),∞] there exists C(p) > 0 such that for all f ∈ L1 ∩ Lp,

‖∇Φ ∗ f‖Lp ≤ C ‖f‖L1∩Lp . (2.3)

(4) For any p ∈ (d,∞] there exists C(p) > 0 such that for all f ∈ L1 ∩ L∞,

‖∇Φ ∗ f‖L∞ ≤ C(p) ‖f‖
2
p ‖f‖

p−2
p

L∞ + C ‖f‖L1 . (2.4)

(5) If f ∈ L2
N ∩ L∞ for some N > 1 + d/2 then for all R ≥ 1,

‖bR(∇Φ ∗ f)‖L∞ ≤ C
(
‖f‖L2

N
+ ‖f‖

d−1
d+1

L∞ ‖f‖
2
d+1

L2
N

)
R−1 ≤ C ‖f‖L2

N∩L∞
R−1. (2.5)

(Hence, ∇Φ ∗ f ∈ L∞1 with ‖∇Φ ∗ f‖L∞1 ≤ C ‖f‖L2
N∩L∞

.)

Proof. (1) Fix q ∈ [1, 2]. Then for any R ≥ 1,

‖bRf‖Lq ≤ ‖1‖
L

2q
2−q (supp bR)

‖bRf‖ ≤ CRd
2−q
2q R−N ‖f‖L2

N
= CR−(N−nq) ‖f‖L2

N
. (2.6)

This along with ‖af‖Lq ≤ C ‖af‖ shows that f ∈ LqN−nq with ‖f‖LqN−nq ≤ C ‖f‖L2
N

.

Observe that

a2n = (a2n − a2n−1) + (a2n−1 − a2n−2) + · · ·+ (a2 − a1) + a1 = a+
n−1∑
k=0

b2k .
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Then, using (2.6),

‖a2nf‖Lq ≤ ‖af‖Lq +
n−1∑
k=0

‖b2kf‖Lq ≤ C ‖f‖L2
N

+ C
n+1∑
k=0

2−k(N−nq) ‖f‖L2
N
≤ C ‖f‖L2

N
,

since N > nq. But a2n increases monotonically to 1. Thus f ∈ Lq with ‖f‖Lq ≤ C ‖f‖L2
N

by

the monotone convergence theorem. Similarly,

‖(1− a2n)f‖Lq ≤ C
∞∑
k=n

2−k(N−nq) ‖f‖L2
N
≤ C2−n(N−nq) ‖f‖L2

N
.

Given R > 0, choose n such that 2n ≤ R < 2n+1. Then

‖(1− aR)f‖Lq ≤ ‖(1− a2n)f‖Lq ≤ C2−n(N−nq) ‖f‖L2
N
≤ CR−(N−nq) ‖f‖L2

N
.

So we see that more generally (2.1) holds.
(2) In 2D, the first inequality in (2.2) is Lemma 8.1 of [19]. It can be proved in all

dimensions in a manner very similar to that of Theorem 3.1 of [25], so we suppress the proof.
The second inequality in (2.2) follows from (1).

(3) We have

‖∇Φ ∗ ρ‖Lp ≤ ‖a∇Φ‖L1 ‖ρ‖Lp + ‖(1− a)∇Φ‖Lp ‖ρ‖L1 <∞
for all p > d/(d− 1), giving (2.3).

(4) Observe that for any p ∈ (d,∞],

‖∇Φ ∗ f‖L∞ ≤ ‖(a∇Φ) ∗ f‖L∞ + ‖((1− a)∇Φ) ∗ f‖L∞
≤ C ‖a∇Φ‖Lp′ ‖f‖Lp + C ‖(1− a)∇Φ‖L∞ ‖f‖L1 ,

where p′ = p/(p− 1) ∈ [1, d/(d− 1)). But by Lebesgue interpolation, ‖f‖Lp ≤ ‖f‖
2
p ‖f‖

p−2
p

L∞ ,
and (2.4) follows.

(5) Assume that |x| ≥ 1, and let R = |x|/8 so that x /∈ supp a2R. We write

|∇Φ ∗ f(x)| ≤ |∇Φ ∗ (aRf)(x)|+ |∇Φ ∗ ((1− aR)f)(x)|
and bound the two terms separately. For the first term,

|∇Φ ∗ (aRf)(x)| ≤ C
∫
supp aR

|x− y|1−daR(y)|f(y)| dy ≤ C|x|1−d ‖aRf‖L1 ≤ C ‖f‖L2
N
|x|1−d,

since |x− y| ≥ 3|x|/4 for y ∈ supp aR. For the other term, we use (2.1) and (2.4) to obtain

|∇Φ ∗ ((1− aR)f)(x)| ≤ C ‖(1− aR)f‖
2
p ‖f‖

p−2
p

L∞ + C ‖(1− aR)f‖L1

≤ C
(
R−N

) 2
p ‖f‖

2
p

L2
N
‖f‖

p−2
p

L∞ + CR−(N−
d
2
) ‖f‖L2

N
.

But N−d/2 > 1 and 2N/p > 2(1+d/2)/p = (2+d)/p ≥ 1 as long as p ∈ (d, 2+d]. Choosing
p = d+ 1 yields (2.5). �

Remark 2.3. An implication of (2.1) is that we could replace bR with 1−aR in Definition 2.1.
The compact support of bR, however, makes it more convenient in most applications.

Lemma 2.4. Let N > 0. Then H1
N (Rd) is continuously and compactly embedded in L2(Rd)

and in L2
M (Rd) for any M < N . Moreover, if (fn) is a bounded sequence in H1

N (Rd) then

there exists f ∈ L2
N (Rd) such that a subsequence of (fn) converges to f in L2

M (Rd) for all
M < N .
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Proof. Let (fn) be a bounded sequence in H1
N . We will construct a subsequence (fnk) and

a function f ∈ L2
N (Rd) for which fnk → f in L2

M (Rd) for any M < N , giving the compact

embedding of H1
N (Rd) in L2

M (Rd) and hence also in L2(Rd).
Because supp ak, k = 1, 2, . . . is bounded, H1(supp ak) is compactly embedded in L2(supp ak).

We can thus extract a subsequence of (fn), which we relabel as (f
(1)
n )∞n=1, and a g1 ∈

L2(supp a1) such that f
(1)
n |supp a1 → g1 in L2(supp a1) as n→∞. We continue this process in-

ductively, constructing sequences (f
(k)
n )∞n=1 and (gk) with gk ∈ L2(supp ak) and f

(k)
n |supp ak →

gk in L2(supp ak) as n → ∞. At each step, we choose the subsequence (f
(k)
n )∞n=1 from

(f
(k−1)
n )∞n=1.
We have gj |supp ak = gk for j > k since

‖gj − gk‖L2(supp ak) ≤ lim
n→∞

[
‖gk − f (j)n ‖L2(supp ak) + ‖gj − f (j)n ‖L2(supp ak)

]
= 0.

Hence, we can define a function f pointwise on Rd by f(x) = limk→∞ gk(x). Observe that
‖(1− ak)fn‖ < Ck−N for all n follows from (2.1). Hence, also ‖(1− ak)f‖ < Ck−N , so
f ∈ L2

N .
We now construct a subsequence of (fn) as follows. We set the first term of the subsequence

equal to f
(1)
j1

, where j1 is chosen sufficiently large to ensure that ‖f (1)j1
− f‖L2(supp a1) < 1.

Proceeding inductively, we set the k-th term of the subsequence equal to f
(k)
jk

, where jk

satisfies jk−1 < jk and ‖f (k)jk
− f‖L2(supp ak) < 1/k. Relabeling this sequence as (fn), we have

that ‖fn − f‖L2(supp an)
< 1/n for all n.

Although we have established that the limiting function f is in L2
N , we cannot conclude

that fn → f in L2
N . We can, however, show that fn → f in L2

M for any M < N , as follows.
Fix M < N , and observe that

‖fn − f‖L2
M

= ‖a(f − fn)‖+ sup
R≥1

RM ‖bR(f − fn)‖ ≤ ‖a(f − fn)‖+ C sup
k∈N

kM ‖bk(f − fn)‖ .

Now let ε > 0. For any fixed k0 ∈ N we can choose N0 > 0 sufficiently large that
‖f − fn‖L2(supp a2k)

< k−M0 ε for any n ≥ N0 and any k ≤ k0. Then for all n ≥ N0,

‖fn − f‖L2
M
≤ C sup

k≤k0
kM ‖f − fn‖L2(supp a2k)

+ C sup
k>k0

kM−NkN ‖(1− ak)(f − fn)‖

≤ CkM0 k−M0 ε+ CkM−N0 kNk−N ≤ C(ε+ kM−N0 ).

We used here that ‖(1− ak)(f − fn)‖ ≤ ‖(1− ak)f‖ + ‖(1− ak)fn‖ ≤ Ck−N . Choosing k0
large enough that kM−N0 < ε we have ‖fn − f‖L2

M
< Cε for all n ≤ N0. Since this holds for

all ε > 0, it follows that ‖fn − f‖L2
M
→ 0 as n→∞. �

Corollary 2.5. Let α ≥ 0 and assume that f ∈ L2
N (Rd) for some integer N > α + d/2.

Then |x|αf(x) ∈ L1(Rd) with ‖|x|αf‖L1 ≤ C ‖f‖L2
N

.

Proof. For any R ≥ 1 we have

RN−α ‖bR|x|αf‖ ≤ (4R)αRN−α ‖bRf‖ ≤ 4αRN ‖bRf‖ ≤ CRNR−N ‖f‖L2
N

= C ‖f‖L2
N
.

This along with ‖a(x)|x|αf(x)‖ ≤ C ‖af‖ shows that |x|αf(x) ∈ L2
N−α with ‖|x|αf(x)‖L2

N−α
≤

C ‖f‖L2
N

. That |x|αf(x) ∈ L1(Rd) with ‖|x|αf‖L1 ≤ C ‖f‖L2
N

then follows from (1) of

Lemma 2.2. �
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Lemma 2.6 shows that time-continuity in L2 with boundedness in L2
N implies time-continuity

in all lower Lebesgue norms. We note that this result follows for all Lq-norms with q ∈ (1, 2]
easily by (1) of Lemma 2.2 and Lebesgue space interpolation, so it is the L1 case that is most
important to us.

Lemma 2.6. If f ∈ C([0, T ];L2) ∩ L∞(0, T ;L2
N ) for N > d/2 then f ∈ C([0, T ];Lq) for all

q ∈ [1, 2].

Proof. Let ε > 0. For any t ∈ [0, T ] let δ > 0 be small enough that ‖f(s)− f(t)‖L2 < ε for

all s ∈ [0, T ] ∩ (t− δ, t+ δ). Fix q ∈ [1, 2] and let nq = d2−q
2q . Then by (1) of Lemma 2.2, for

any R ≥ 1,

‖f(s)− f(t)‖Lq ≤ ‖aR(f(s)− f(t))‖Lq + ‖(1− aR)(f(s)− f(t))‖Lq
≤ ‖f(s)− f(t)‖Lq(B2R(0))

+ CR−(N−nq) ‖f‖L2
N

≤ CRnq ‖f(s)− f(t)‖+ CR−(N−nq) ‖f‖L2
N
≤ CRnqε+ CR−(N−nq).

Set R = ε−
1
N . Then

‖f(s)− f(t)‖Lq ≤ Cε
1−nq

N ,

from which f ∈ C([0, T ];Lq) follows, since nq ≤ n1 = d/2 < N . �

3. The linear viscous problem

In this section, we investigate solutions to the linear parabolic problem,{
∂tξ + vf · ∇ξ = σ2fξ + ν∆ξ + g,
ξ(0) = f(0),

(3.1)

where f , g are given functions of space and time and vf := σ1∇Φ ∗ f . In Section 4, we will
use a sequence of solutions to (3.1) to obtain existence of a solution to the nonlinear problem
in (GAGν). In the limit we will have f = ξ = ρν , so that we will want f and ξ to exist in
the same function spaces.

Definition 3.1. Fix N > 1 + d/2 and define the solution space

YN := {h ∈ C([0, T ];L2) ∩ L2(0, T ;H1
N ) ∩ L∞(0, T ;L2

N ) : ∂th ∈ L2(0, T ;H−1)}.

(We place no norm on YN , however.) Assume that f ∈ YN ∩ L∞([0, T ] × Rd), and let
vf = σ1∇Φ ∗ f . Assume that g ∈ L2(0, T ;L2

N ). We say that ξ ∈ YN is a weak solution to the
linear problem (3.1) on the interval [0, T ] if ξ(0) = f(0) and

(∂tξ(t), ϕ)+ν〈∇ξ(t),∇ϕ〉 − (σ1 + σ2)〈f(t)ξ(t), ϕ〉 − 〈vf (t)ξ(t),∇ϕ〉 = 〈g, ϕ〉
for a.e. t ∈ [0, T ] for all ϕ ∈ H1

N .
(3.2)

Equality in (3.2) is to hold in the sense of distributions on (0, T ).

Remark 3.2. By ∂tξ in Definition 3.1 we mean the weak time derivative of f (see 5.9.2 and

Appendix E.5 of [11]). Thus, ∂tξ ∈ L2(0, T ;H−1) means that
∫ T
0 ∂tξ(t)v(t) dt = −

∫ T
0 ξ(t)v′(t) dt

for all real-valued v ∈ C∞c ((0, T )), the integrations being over Banach space (H−1) valued
functions. We will show in Theorem 3.3 that we can also treat ∂tξ as a distributional deriv-
ative. Also, by the initial condition ξ(0) = f(0) we mean that ξ(t)→ f(0) in L2 as t→ 0+,
which makes sense because ξ ∈ C([0, T ];L2).
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In many of the proofs that follow we will want to make an energy argument by applying
(3.2) with a ϕ that lies in the solution space. In other cases we wish to apply (3.2) with a
test function in C∞c ((0, T )×Rd) to prove the existence of a solution. This can be justified in
an entirely standard way. For completeness, we give the proof below.

Theorem 3.3. Let

Y := {h ∈ C([0, T ];L2) ∩ L2(0, T ;H1) : ∂th ∈ L2(0, T ;H−1)}

and assume that f , g, and vf are as in Definition 3.1. The function ξ ∈ YN with ξ(0) = f(0)
is a weak solution as in Definition 3.1 if and only if any of the following hold:
(1) (3.2) holds for all ϕ ∈ C∞c (Rd).
(2) For all ϕ ∈ C∞c ((0, T )× Rd) we have

−
∫ T

0
(∂tξ, ϕ) +

∫ T

0

∫
Rd

(ξvf · ∇ϕ+ (σ1 + σ2)fξϕ− ν∇ξ · ∇ϕ) = −
∫ T

0

∫
Rd
gϕ or∫ T

0

∫
Rd

(ξ∂tϕ+ ξvf · ∇ϕ+ (σ1 + σ2)fξϕ− ν∇ξ · ∇ϕ) = −
∫ T

0

∫
Rd
gϕ.

(3.3)

That is, (3.1) holds on (0, T )× Rd in the sense of distributions.
(3) For all ϕ ∈ C([0, T ];L2) ∩ L2(0, T ;H1)

−
∫ T

0
(∂tξ, ϕ) +

∫ T

0

∫
Rd

(ξvf · ∇ϕ+ (σ1 + σ2)fξϕ− ν∇ξ · ∇ϕ) = −
∫ T

0

∫
Rd
gϕ.

(4) For all ϕ ∈ Y we have∫ T

0
(ξ, ∂tϕ)+

∫ T

0

∫
Rd

(ξvf · ∇ϕ+ (σ1 + σ2)fξϕ− ν∇ξ · ∇ϕ)

=

∫
Rd

(ξ(T )ϕ(T )− f(0)ϕ(0))−
∫ T

0

∫
Rd
gϕ.

Finally, if ξ is a weak solution as in Definition 3.1 then (1)-(4) hold with any t ∈ [0, T ] in
place of T .

Proof. We give the proof for g ≡ 0 as forcing plays no significant role in the proofs. Assume
first that ξ is a solution as given in Definition 3.1. Then (1) follows since C∞c (Rd) ⊆ H1

N .

Next we prove (2). Let ϕ(t, x) = ϕ1(t)ϕ2(x), where ϕ1 ∈ D(0, T ) and ϕ2 ∈ D(Rd). In light
of Remark 3.2 we see that integrating (3.2) in time gives either equality in (3.3). Because
D′((0, T ) × Rd) = D′((0, T )) ⊗ D′(Rd) by the Schwartz kernel theorem, it follows that (3.3)
holds for all ϕ ∈ D((0, T )×Rd). This establishes (2), since C∞c ((0, T )×Rd) = D((0, T )×Rd)
as sets.

To prove (3), we first show that (3.3)1 holds for any ϕ in C∞([0, T ];C∞c (Rd)), which is
clearly dense in C([0, T ];L2) ∩ L2(0, T ;H1) (and in Y ). So let ϕ ∈ C∞([0, T ];C∞c (Rd)).
Letting hε be as in Lemma 3.8, define ϕε(t, x) = hε(t)ϕ(t, x). Since ϕε ∈ C∞c ((0, T ) × Rd),
(3.3)1 holds for ϕε by (2). But∣∣∣∫ T

0
(∂tξ, ϕ)−

∫ T

0
(∂tξ, ϕε)

∣∣∣ ≤ (∫ 3ε/2

0
+

∫ T

T−3ε/2

)
‖∂tξ(t)‖H−1 ‖(ϕ− ϕε)(t)‖H1 dt→ 0

by the continuity of the Lebesgue integral. The same kind of bound holds for the other terms
in (3.3)1. Thus, (3.3)1 holds for ϕ.
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Now let (ϕn) be a sequence in C∞([0, T ];C∞c (Rd)) converging to ϕ in C([0, T ];L2) ∩
L2(0, T ;H1). Then (3.3)1 holds for each ϕn, and taking advantage of f and, by (2) of
Lemma 2.2, vf both lying in L∞((0, T )× Rd), it is easy to see that (3) holds in the limit as
n→∞. Then (4) follows the same way, except that we use Lemma 3.9 for the time integral.

Also note that (1)-(4) clearly hold with any t ∈ [0, T ] in place of T .
We now prove the reverse implications. That (1) implies that ξ is a weak solution follows

from the density of C∞c (Rd) in H1
N . That (2) implies (1) follows from applying either form

of (3.3) with a test function of the form ϕ(t, x) = ϕ1(t)ϕ2(x), since (3.2) is to hold in the
sense of distributions in time. Finally, that (3) implies (2) and that (4) implies (3) follows
by handling the time integral using Lemma 3.9 as we did in the proof of (4). �

To obtain the existence of solutions, we use the following extremely general result due to
Lions and Magenes [17]. We quote the result as it appears in Theorem 10.9 of [5].

Theorem 3.4. [J.-L. Lions] Let H be a Hilbert space with the subspace V continuously and
densely embedded in H. Fix T > 0 and suppose that a(t;u, v) : V × V → R is a bilinear form
satisfying for some constants M,α,C > 0:

(1) for every u, v ∈ V the function t 7→ a(t;u, v) is measurable;
(2) |a(t;u, v)| ≤M ‖u‖V ‖v‖V for a.e. t ∈ [0, T ] for all u, v ∈ V ;

(3) |a(t; v, v)| ≥ α ‖v‖2V − C ‖v‖
2
H for a.e. t ∈ [0, T ] for all v ∈ V .

Given g ∈ L2(0, T ;V ∗) and u0 ∈ H, there exists a unique u with

u ∈ L2(0, T ;V ) ∩ C([0, T ];H) and ∂tu ∈ L2(0, T ;V ∗)

such that u(0) = u0 and

(∂tu(t), v) + a(t;u(t), v) = (g(t), v) for a.e. t ∈ [0, T ] for all v ∈ V.

We will apply Theorem 3.4 with H = L2(Rd), V = H1(Rd), and

a(t;u, v) = ν〈∇u,∇v〉 − (σ1 + σ2)〈fu, v〉 − 〈vf , u∇v〉, (3.4)

noting that formally,

〈∂tξ(t), ϕ〉+ a(t; ξ(t), ϕ) = 〈∂tξ(t)− ν∆ξ(t)− σ2fξ(t) + vf · ∇ξ(t), ϕ〉,

in accordance with (3.1).

Theorem 3.5. Let ν > 0 and T > 0 and let N > 1 + d/2. There exists a unique weak
solution to (3.1) as in Definition 3.1. Moreover, the norms on ξ in L2(0, T ;H1

N ) and in
L∞(0, T ;L2

N ) can be bounded strictly in terms of ‖f(0)‖L2
N

, ‖f‖L2(0,T ;L2
N∩L∞), ‖ξ‖L2(0,T ;L2),

‖g‖L2(0,T ;L2
N ), and ν−1.

Proof. Let H = L2(Rd), V = H1(Rd), and define the bilinear form on V × V as in (3.4).
Then the existence and uniqueness of a weak solution ξ as in Definition 3.1 but with ξ ∈
L2(0, T ;H1)∩C([0, T ];L2) and test functions in H1 follows from Theorem 3.4 once we verify
the three required properties of a as follows:

(1) This follows from f ∈ YN ∩ L∞((0, t)× Rd) and (2.2).
(2) We have

|a(t;u, v)| ≤ ν ‖∇u‖ ‖∇v‖+ |σ1 + σ2| ‖f‖L∞ ‖u‖ ‖v‖+ ‖vf‖L∞ ‖u‖ ‖∇v‖
≤M ‖u‖V ‖v‖V .
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(3) We have,

|a(t; v, v)| = |ν ‖∇v‖2 − (σ1 + σ2)〈fv, v〉 − 〈vf , v∇v〉|.

But

〈vf , v∇v〉 =
1

2
〈vf ,∇|v|2〉 = −1

2
〈div vf , |v|2〉 = −σ1

2
〈f, |v|2〉.

(A density argument is used to integrate by parts here. We simply note that we have
sufficient regularity and decay of f and v so that the first and last expressions make
sense.) Thus

|a(t; v, v)| =
∣∣∣ν ‖∇v‖2 − σ1 + 2σ2

2
〈fv, v〉

∣∣∣
≥ ν ‖∇v‖2 −

∣∣∣σ1 + 2σ2
2

∣∣∣ ‖f‖L∞ ‖v‖2 = ν ‖∇v‖2 − C ‖v‖2

= ν(‖∇v‖2 + ‖v‖2)− (C + ν) ‖v‖2 = ν ‖v‖2V − (C + ν) ‖v‖2H .

We now show that, in fact, ξ ∈ YN (we note that it is the inability to verify (3) for H = L2
N ,

V = H1
N that requires us to explicitly show this). By (4) of Theorem 3.3 applied with the

test function ϕ = b2Rξ ∈ Y , we have∫ t

0

(
〈∂tξ, b2Rξ〉+ 〈ξvf ,∇(b2Rξ)〉+ (σ1 + σ2)〈f, b2Rξ2〉 − ν〈∇ξ,∇(b2Rξ)〉

)
= ‖bRξ(t)‖2 − ‖bRf(0)‖2 −

∫ t

0
〈g, b2Rξ〉.

(3.5)

By Lemma 3.9, we have∫ t

0
〈∂tξ, b2Rξ〉 = −

∫ t

0
〈∂tξ, b2Rξ〉+ ‖bRξ(t)‖2 − ‖bRf(0)‖2 .

Thus (3.5) can be rewritten as∫ t

0

(
〈∂tξ, b2Rξ〉 − 〈ξvf ,∇(b2Rξ)〉 − (σ1 + σ2)〈f, b2Rξ2〉+ ν〈∇ξ,∇(b2Rξ)〉

)
=

∫ t

0
〈g, b2Rξ〉.

Now observe that∫ t

0

∫
Rd
b2Rξ∂tξ =

1

2

(
‖bRξ(t)‖2 − ‖bRf(0)‖2

)
,

|〈ξvf ,∇(b2Rξ)〉| = |〈vf , 2bRξ2∇bR + b2Rξ∇ξ〉|

≤ 2 ‖bRvf‖L∞ ‖∇bR‖L∞ ‖ξ‖
2 + ‖bRvf‖L∞ ‖ξ‖ ‖bR∇ξ‖

≤ Cν−1R−2 ‖ξ‖2 +
ν

4
‖bR∇ξ‖2 ,

|〈f, b2Rξ2〉| ≤ ‖f‖L∞ ‖bRξ‖
2 ,

ν〈∇ξ,∇(b2Rξ)〉 = ν〈∇ξ, 2bRξ∇bR + b2R∇ξ〉 = ν ‖bR∇ξ‖2 + 2ν〈bRξ∇ξ,∇bR〉,
|2ν〈bRξ∇ξ,∇bR〉| ≤ 2ν ‖∇bR‖L∞ ‖ξ‖ ‖bR∇ξ‖ ≤ CνR

−1 ‖ξ‖ ‖bR∇ξ‖

≤ CνR−2 ‖ξ‖2 +
ν

4
‖bR∇ξ‖2 ,

〈g, b2Rξ〉 ≤ ‖bRg‖ ‖bRξ‖ ≤ (1/2) ‖bRg‖2 + (1/2) ‖bRξ‖2 .
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We used (5) of Lemma 2.2 to bound bRvf in L∞, and we used Young’s inequality in the second
inequality above and in the estimates for the last two terms. In the one term involving a
time derivative we applied Lemma 3.9, using (∂tξ, b

2
Rξ) = (∂t(b

2
Rξ), ξ). Thus,

‖bRξ(t)‖2 +

∫ t

0
ν ‖bR∇ξ‖2 ≤ ‖bRf(0)‖2 +

∫ t

0
‖bRg‖2

+

∫ t

0
‖bRξ‖2 +

∫ t

0

(
C

νR2
‖ξ‖2 + C ‖bRξ‖2

)
.

Applying Lemma 1.2 (Grönwall’s lemma) gives

‖bRξ(t)‖2 + ν

∫ t

0
‖bR∇ξ‖2 ≤

(
CR−2N + C0(t)ν

−1tR−2
)
eC0(t)t, (3.6)

where we used f(0) ∈ L2
N , g ∈ L2(0, T ;L2

N ) for some N > 1 + d/2 with 2N an integer. It
follows from (3.6) that

‖bRξ(t)‖2 + ν

∫ t

0
‖bR∇ξ‖2 ≤ C0(t)R

−2kν−keC0(t)t (3.7)

for k = 1 and all ν ≤ ν0 for any fixed ν0 > 0.
We now proceed by induction. Let S(k) be the statement that (3.7) holds. We have shown

that S(k) is true for k = 1; now suppose that it holds up to some k − 1 < N .
We refine the estimates,

|〈ξvf ,∇(b2Rξ)〉| ≤ Cν−1R−2 ‖ξ‖
2
L2(supp∇bR) +

ν

4
‖bR∇ξ‖2 ,

|2ν〈bRξ∇ξ,∇bR〉| ≤ CνR−2 ‖ξ‖2L2(supp∇bR) +
ν

4
‖bR∇ξ‖2 .

But since b2R(x) + bR(x) + bR/2(x) = 1 on the support of ∇bR, we can write

‖ξ‖2L2(supp∇bR) ≤
∥∥(b2R + bR + bR/2)ξ

∥∥2
≤ ν−(k−1)

(
C0(t)(R/2)−2(k−1)eC0(t)t + C0(t)R

−2(k−1)eC0(t)t + C0(t)(2R)−2(k−1)eC0(t)t
)

≤ C0(t)R
−2(k−1)ν−(k−1)eC0(t)t.

This follows from (3.7) applied with R as well as with R replaced by both R/2 and 2R. With
these refinements the argument that led to (3.6) now gives

‖bRξ(t)‖2 + ν

∫ t

0
‖bR∇ξ‖2 ≤

(
CR−2N + C0(t)ν

−ktR−2k
)
eC0(t)t.

So (3.7) holds for k as well by induction. We must stop at k = N , however, the bounds

‖bRf(0)‖2, ‖bRg‖2L2(0,T ;L2) ≤ CR−2N being the limiting factors.

This shows that ξ ∈ L∞(0, T ;L2
N ) ∩ L2(0, T ;H1

N ).
Finally, the dependence of the various constants C0(t) on the data occurs only through

‖f(0)‖L2
N

and ‖f‖L2(0,T ;L2
N∩L∞). Hence, the norms on ξ in L2(0, T ;H1

N ) and in L∞(0, T ;L2
N )

can be bounded strictly in terms of ‖f(0)‖L2
N

, ‖f‖L2(0,T ;L2
N∩L∞), ‖ξ‖L2(0,T ;L2), and ‖g‖L2(0,T ;L2

N ).

�

Theorem 3.6. Fix an integer k ≥ 0 and define the space

Y k
N := {h ∈ C([0, T ];Hk) ∩ L2(0, T ;Hk+1

N ) ∩ L∞(0, T ;Hk
N ) : ∂th ∈ L2(0, T ;Hk−1)}
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(but place no norm on it). Assume that f ∈ Y k
N , g ∈ L2(0, T ;Hk

N ). Let ξ be the unique weak

solution to (3.1) given by Theorem 3.5. Then ξ ∈ Y k
N .

Proof. This regularity result for L2-based spaces rather than L2
N -based spaces is classical,

based on a sequence of smooth Galerkin approximations to the solution. We give only a
formal bootstrapping argument to explain how to obtain the L2

N -based result from the L2-
based result.

Taking ∂i of (3.1) for any i = 1, . . . , d gives formally

∂t∂iξ + vf · ∇∂iξ = σ2f∂iξ + ν∆∂iξ +G, (3.8)

with ∂iξ(0) = ∂if(0), where

G := σ2∂ifξ − ∂ivf · ∇ξ + ∂ig.

That is, ∂iξ also satisfies (3.1) with different forcing and initial data.
But G ∈ L2(0, T ;L2

N ), so by Theorem 3.5 there exists a unique weak solution, which we will
call γi, to (3.1) with forcing function G and initial data ∂if(0). Now, γi is a weak solution to
(3.1) and ∂iξ is formally a solution to (3.1) with the same initial data and forcing as γi. In fact,
γi = ∂iξ follows from the Galerkin-approximation argument referred to earlier. Hence, ∂iξ ∈
YN . Because this holds for all i we have ∇ξ ∈ YN and thus ξ ∈ C([0, T ];H1)∩L2(0, T ;H2

N )∩
L∞(0, T ;H1

N ). Since (3.1) holds in the sense of distributions by (2) of Theorem 3.3, it follows

that ∂tξ ∈ L2(0, T ;Hk−1) so that ξ ∈ Y k
N . This gives the result for k = 1. The result follows

for any k by repeating this same process k − 1 more times. �

In Theorem 3.7 we obtain uniform-in-viscosity bounds on the norms of ξ in L∞([0, T ];Lq)
over time for sufficiently regular solutions. These bounds can be obtained for weak solutions
as well but only with considerable additional technical difficulties due to the lack of a priori
knowledge that the solution is continuous over time in the Lq-norm. Because our use of
Theorem 3.7 is only to show the analogous result for nonlinear solutions in the next section,
we limit ourselves to regular solutions, which is all we will need.

Theorem 3.7. Let ν, T > 0 and assume that f ∈ Y k
N for some N > 1 + d/2, k > d/2. Let

ξ be the regular solution to (3.1) given by Theorem 3.6 without forcing (g ≡ 0). For any
q ∈ [1,∞] we have

‖ξ(t)‖Lq ≤ ‖f(0)‖Lq exp

(∣∣∣σ1
q

+ σ2

∣∣∣ ∫ t

0
‖f(s)‖L∞ ds

)
. (3.9)

Further, for q = 2 we have

‖ξ(t)‖2 + 2ν

∫ t

0
‖∇ξ‖2 ≤ ‖f(0)‖2 exp

(∣∣∣σ1 + 2σ2

∣∣∣ ∫ t

0
‖f(s)‖L∞ ds

)
. (3.10)

Proof. By Theorem 3.6 and Sobolev embedding ξ ∈ C([0, T ];Lq) for all q ∈ [2,∞), while by
Lemma 2.6 ξ ∈ C([0, T ];Lq) for all q ∈ [1, 2). Assume that q is a rational number in (1,∞)
with q = m1/m2 in lowest terms for m1 even. This insures that ξq ≥ 0. The conclusions we
reach for such rational q’s will hold for all q ∈ [1,∞) by the continuity of Lebesgue norms.

If done formally, the argument we will make is very simple: multiply (3.1) by ϕ = ξq−1,
integrate over space and time, perform several integrations by parts, and in the end obtain
a bound on ‖ξ(t)‖Lq . In fact, for q ≥ 2 there is little more to the argument since we
have restricted ourselves to sufficiently regular solutions. One of these integrations by parts,
however, introduces a factor of ξq−2 which is singular when q < 2. We will remove this
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singularity by multiplying ξq−1 by a factor that vanishes when ξ is near zero. This factor will
be derived from a function λε ∈ C∞(R) parameterized by ε ∈ (0, 1/2) and defined so that

λε(x) =

{
(3/2)ε, x < ε,

x, x > 2ε

and so that λ′ε, λ
′′
ε ≥ 0 with λ′ε ≤ C where C is independent of ε.

So instead of simply using ϕ = ξq−1 we use ϕ := λ′ε(ξ
q)ξq−1. We can write this as

ϕ = fε(ξ)ξ
q, where fε(x) := λ′ε(x

q)/x. Then fε ∈ C∞(R) with

‖fε‖L∞ ≤ ((3/2)ε)−1
∥∥λ′ε∥∥L∞ ≤ Cε−1,∥∥f ′ε∥∥L∞ =

∥∥∥∥xλ′′ε(xq)qxq−1 − λ′ε(xq)x2

∥∥∥∥
L∞x

≤
(

2

3ε

)2 (∥∥qλ′′ε(xq)xq∥∥L∞x +
∥∥λ′ε(xq)∥∥L∞x )

≤ Cε−2 (Cq(2ε)q + C) ≤ C(ε−2 + εq−2).

It follows immediately from this that ϕ ∈ L∞(0, T ;L1 ∩ L∞) since ξq belongs in this same
space. For time continuity, we have

‖ϕ(t)− ϕ(s)‖Lr ≤ ‖fε(ξ(s))(ξ
q(t)− ξq(s))‖Lr + ‖ξq(t)(fε(ξ(t))− fε(ξ(s)))‖Lr

≤ ‖fε‖L∞ ‖ξ
q(t)− ξq(s)‖Lr +

∥∥f ′ε∥∥L∞ ‖ξq(t)‖L∞ ‖ξ(t)− ξ(s)‖Lr .
We conclude that ϕ ∈ C([0, T ];Lr) for all r ∈ [1,∞).

Then∇ϕ = (q−1)λ′ε(ξ
q)ξq−2∇ξ+qλ′′ε(ξq)ξ2(q−1)∇ξ ∈ L2(0, T ;L2

N ) since∇ξ ∈ L2(0, T ;L2
N )

and the singularity in ξq−2 is removed because λ′ε(x) = 0 for x < ε. Hence, ϕ ∈ L2(0, T ;H1)
and thus has sufficient regularity to apply in (3) of Theorem 3.3. This gives∫ t

0

∫
Rd
∂tξλ

′
ε(ξ

q)ξq−1 =

∫ t

0

∫
Rd
ξvf · ∇(λ′ε(ξ

q)ξq−1)

+

∫ t

0

∫
Rd

(
(σ1 + σ2)fξλ

′
ε(ξ

q)ξq−1 − ν∇ξ · ∇(λ′ε(ξ
q)ξq−1)

)
.

(3.11)

We were able to replace the pairing in the first integral by a spatial integral because ∂tξ ∈
L2(0, T ;Hk−1) by Theorem 3.6 and ϕ = λ′ε(ξ

q)ξq−1 ∈ L∞(0, T ;L2). Because of the regularity
and decay given by Theorem 3.6, we can easily integrate all but the time integral by parts,
as follows:∫

Rd
ξvf · ∇(λ′ε(ξ

q)ξq−1) = −
∫
Rd

div(ξvf )λ′ε(ξ
q)ξq−1

= −σ1
∫
Rd
fλ′ε(ξ

q)ξq −
∫
Rd

(vf · ∇ξ)λ′ε(ξq)ξq−1,

−
∫
Rd

(vf · ∇ξ)λ′ε(ξq)ξq−1 = −1

q

∫
Rd

vf · ∇(λε(ξ
q)) =

1

q

∫
Rd

div(vf )λε(ξ
q)

=
σ1
q

∫
Rd
fλε(ξ

q)∫
Rd
fξλ′ε(ξ

q)ξq−1 =

∫
Rd
fλ′ε(ξ

q)ξq,

− ν
∫
Rd
∇ξ · ∇(λ′ε(ξ

q)ξq−1) = −(q − 1)ν

∫
Rd
λ′ε(ξ

q)ξq−2|∇ξ|2

− qν
∫
Rd
λ′′ε(ξ

q)ξ2(q−1)|∇ξ|2 ≤ 0.
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Note that fλε(ξ
q) ∈ L∞(0, T ;L1∩L∞) since f lies in this same space and λε(ξ

q) ∈ L∞(0, T ;L∞).
In the last inequality we used λ′ε, λ

′′
ε ≥ 0 to conclude that the two integrals were ≤ 0. For

q = 2, though, these terms would simplify to

−ν
∫
Rd
λ′ε(ξ

2)|∇ξ|2 − 2ν

∫
Rd
λ′′ε(ξ

2)ξ2|∇ξ|2. (3.12)

We will return to this issue at the end of the proof.
From (3.11) we now have∫ t

0

∫
Rd
∂tξλ

′
ε(ξ

q)ξq−1 ≤
∫ t

0

∫
Rd

(
σ2fλ

′
ε(ξ

q)ξq +
σ1
q
fλε(ξ

q)

)
. (3.13)

We will now take limε→0 of each term in (3.13). The two terms on the right-hand side are
easy: Since λε(ξ

q) 6= ξq only on the set Eε(t) := {x ∈ Rd : ξq(t, x) < 2ε}, we have∣∣∣∫ t

0

∫
Rd
fλε(ξ

q)−
∫ t

0

∫
Rd
fξq
∣∣∣ ≤ ∫ t

0

∫
Eε(t)
|f(λε(ξ

q)− ξq)|

≤ 4ε

∫ t

0

∫
Rd
|f | ≤ 4ε ‖f‖L1((0,T )×Rd) ≤ Cε,

∣∣∣∫ t

0

∫
Rd
fλ′ε(ξ

q)ξq −
∫ t

0

∫
Rd
fξq
∣∣∣ ≤ ∫ t

0

∫
Rd
|fξq(λ′ε(ξq)− 1)|

≤
∫ t

0

∫
Eε(t)
|fξq||λ′ε(ξq)− 1| ≤ Cε

∫ t

0

∫
Rd
|f |,

since λ′ε ≤ C, ξq ≤ 2ε on Eε(t), and λ′ε(ξ
q) = 1 on Rd \ Eε(t). Hence as ε→ 0,∫ t

0

∫
Rd
fλε(ξ

q)→
∫ t

0

∫
Rd
fξq,

∫ t

0

∫
Rd
fλ′ε(ξ

q)ξq →
∫ t

0

∫
Rd
fξq.

This leaves the time integral. We have,∫ t

0

∫
Rd
∂tξλ

′
ε(ξ

q)ξq−1 = lim
R→∞

∫ t

0

∫
Rd
aR∂tξλ

′
ε(ξ

q)ξq−1 =
1

q
lim
R→∞

∫ t

0

∫
Rd
∂t(aRλε(ξ

q))

=
1

q
lim
R→∞

(‖aRλε(ξ(t)q)‖L1 − ‖aRλε(f(0)q)‖L1) =
1

q
lim
R→∞

∫
Rd
aR (λε(ξ(t)

q)− λε(f(0)q))

=
1

q

∫
Rd

(λε(ξ(t)
q)− λε(f(0)q)) .

The first equality holds by the dominated convergence theorem, and the third follows by
integrating by parts in time. For the final equality, we used that

|λε(ξ(t, x)q)− λε(f(0, x)q)| = |λε(ξ(t, x)q)− λε(f(0, x)q)|
|ξ(t, x)q − f(0, x)q|

|ξ(t, x)q − f(0, x)q|

≤
∥∥λ′ε∥∥L∞ |ξ(t, x)q − f(0, x)q| = C|ξ(t, x)q − f(0, x)q|

to conclude that λε(ξ(t)
q) − λε(f(0)q) ∈ L1(Rd) (even though neither term alone lies in

L1(Rd)). This allowed us to apply the dominated convergence theorem to take R→∞. This
same bound then also allows us to apply the dominated convergence theorem to take ε→ 0,
so that

lim
ε→0

∫ t

0

∫
Rd
∂tξλ

′
ε(ξ

q)ξq−1 =
1

q

∫
Rd

(ξ(t)q − f(0)q) =
1

q

(
‖ξ(t)‖qLq − ‖f(0)‖qLq

)
.
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Therefore, in the limit as ε→ 0, (3.13) becomes

1

q

(
‖ξ(t)‖qLq − ‖f(0)‖qLq

)
≤
∫ t

0

∫
Rd

(
σ1
q

+ σ2

)
fξq.

Rearranging and applying Lemma 1.2 (Grönwall’s lemma) gives

‖ξ(t)‖qLq ≤ ‖f(0)‖qLq exp

(
|σ1 + qσ2|

∫ t

0
‖f(s)‖L∞ ds

)
, (3.14)

from which (3.9) follows for all q ∈ [1,∞].
The result for q = 2 in (3.10) can be obtained by keeping the terms in (3.12). It can also

be obtained directly by a simplification of the argument we just gave, since there is no need
to introduce either aR or λε when q = 2. �

We used the following lemmas in the proofs above.

Lemma 3.8. Let T > 0 and fix t0 ∈ [0, T ]. We can define functions hε ∈ D((0, T )) parame-
terized by ε ∈ (0, t0/2) such that hε = 1 on [3ε/2, t0− 3ε/2], hε = 0 on [0, ε/2]∪ [t0− ε/2, T ],
hε ≥ 0, and h′ε(·) → δ(·) − δ(· − t0) as ε → 0, the convergence being as Radon measures on
[0, T ].

Proof. Let η ∈ C∞c (R) be supported on (−1/2, 1/2), nonnegative with
∫
R η = 1, and define

ηε(·) = ε−dη(·/ε). Set

hε(t) :=

∫ t

0
(ηε(s− ε)− ηε(s− t0 + ε)) ds.

It is easy to see that hε has all the stated properties. �

Lemma 3.9. For all ξ, ϕ ∈ Y ,∫ T

0
(∂tξ, ϕ) = −

∫ T

0
(ξ, ∂tϕ) + (ξ(T ), ϕ(T ))− (ξ(0), ϕ(0)).

Proof. Fix ξ ∈ Y and assume at first that ϕ ∈ C∞([0, T ];C∞c (Rd)). Let hε be as in
Lemma 3.8. Then hεϕ ∈ D((0, T )× Rd) so

lim
ε→0

∫ T

0
(∂tξ, hεϕ) = − lim

ε→0

∫ T

0
(ξ, ∂t(hεϕ))

= − lim
ε→0

∫ T

0
hε(t)(ξ(t), ∂tϕ(t)) dt− lim

ε→0

∫ T

0
h′ε(t)(ξ(t), ϕ(t)) dt

= −
∫ T

0
(ξ(t), ∂tϕ(t)) dt+ (ξ(T ), ϕ(T ))− (ξ(0), ϕ(0)).

In the last step we used the dominated convergence theorem for the first integral, since

|hε(t)(ξ(t), ∂tϕ(t))| ≤ ‖ξ(t)‖H1 ‖∂tϕ(t)‖H−1 ∈ L1([0, T ])

and in the second integral we used the continuity of (ξ(t), ϕ(t)) in time. The result then
follows from the density of C∞([0, T ];C∞c (Rd)) in Y . �
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4. The nonlinear viscous problem

Definition 4.1 gives our definition of a weak solution to the generalized aggregation equation.
This definition applies for both viscous and inviscid solutions. In this section we treat viscous
solutions, leaving inviscid solutions to Section 5.

Definition 4.1. Fix N > 1 + d/2 and let YN be as in Definition 3.1. Let ν ≥ 0 and
ρ0 ∈ L2

N ∩ L∞. We say that ρν ∈ YN is a weak solution to the generalized aggregation
equations (GAGν) on the interval [0, T ] with initial density ρ0 if ρν(0) = ρ0 with

(∂tρ
ν(t), ϕ)+ν〈∇ρν(t),∇ϕ〉 − (σ1 + σ2)〈(ρν(t))2, ϕ〉 − 〈ρν(t)vν(t),∇ϕ〉 = 0

for a.e. t ∈ [0, T ] for all ϕ ∈ H1
N .

(4.1)

Equality in (4.1) is to hold in the sense of distributions on (0, T ).

Theorem 4.2. The function ρν ∈ YN ∩ L∞([0, T ] × Rd) with ρν(0) = ρ0 is a weak solution
as in Definition 4.1 if and only if any of the following hold:
(1) (4.1) holds for all ϕ ∈ C∞c (Rd).
(2) For all ϕ ∈ C∞c ((0, T )× Rd) we have

−
∫ T

0
(∂tρ

ν , ϕ) +

∫ T

0

∫
Rd

(
ρνvν · ∇ϕ+ (σ1 + σ2)(ρ

ν)2ϕ− ν∇ρν · ∇ϕ
)

= 0 or∫ T

0

∫
Rd

(
ρν∂tϕ+ ρνvν · ∇ϕ+ (σ1 + σ2)(ρ

ν)2ϕ− ν∇ρν · ∇ϕ
)

= 0.

That is, (GAGν) holds on (0, T )× Rd in the sense of distributions.
(3) For all ϕ ∈ C([0, T ];L2) ∩ L2(0, T ;H1)

−
∫ T

0
(∂tρ

ν , ϕ) +

∫ T

0

∫
Rd

(
ρνvν · ∇ϕ+ (σ1 + σ2)(ρ

ν)2ϕ− ν∇ρν · ∇ϕ
)

= 0.

(4) For all ϕ ∈ Y we have∫ T

0
(ρν , ∂tϕ) +

∫ T

0

∫
Rd

(
ρνvν · ∇ϕ+ (σ1 + σ2)(ρ

ν)2ϕ− ν∇ρν · ∇ϕ
)

=

∫
Rd

(ρν(T )ϕ(T )− ρ0ϕ(0)).

(4.2)

Finally, if ρν is a weak solution as in Definition 4.1 then (1)-(4) hold with any t ∈ [0, T ] in
place of T .

Proof. This follows from Theorem 3.3, since ρν is a weak solution to (3.1) as in Definition 3.1
with f = ρν and ρ0 = f(0). �

Remark 4.3. In Theorem 4.2 we used the assumption that ρν lies not just in Y N , but also
in L∞([0, T ]× Rd), so that it can serve as a valid f in Definition 3.1. It is only in showing
that (4) follows from ρν being a weak solution to the nonlinear problem that this additional
assumption is required, however.

To establish the existence of solutions as in Definition 4.1 we will construct a sequence of
approximations as follows:

ρ0(t, x) = ρ0(x),
vn = σ1∇Φ ∗ ρn−1,
∂tρn + vn · ∇ρn = σ2ρn−1ρn + ν∆ρn,
ρn(0) = ρ0

(4.3)
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for n = 1, 2, . . . . In (4.3)2,3,4 ρn is a regular solution to the linear problem as given by
Theorem 3.6 with f = ρn−1. Note that div vn = σ1ρn−1.

Proposition 4.4. Fix T > 0 with T < (|σ2| ‖ρ0‖L∞)−1 or T < ∞ if σ2 = 0. Assume that

ρ0 ∈ Hk
N for some N > 1 + d/2, k > d/2. Let ν > 0, n ≥ 0, t ∈ [0, T ]. We have

‖ρn(t)‖L∞ ≤
‖ρ0‖L∞

1− |σ2| ‖ρ0‖L∞ t
. (4.4)

When σ2 6= 0 we have

‖ρn(t)‖Lq ≤ ‖ρ0‖Lq (1− |σ2| ‖ρ0‖L∞ t)
−| σ1

qσ2
+1| ∀ q ∈ [1,∞),

‖ρn(t)‖2 + 2ν

∫ t

0
‖∇ρn‖2 = ‖ρ0‖2 (1− |σ2| ‖ρ0‖L∞ t)

−|σ1
σ2

+2|
.

(4.5)

When σ2 = 0 we have

‖ρn(t)‖Lq ≤ ‖ρ0‖Lq exp
(
|σ1|q−1 ‖ρ0‖L∞ t

)
∀ q ∈ [1,∞),

‖ρn(t)‖2 + 2ν

∫ t

0
‖∇ρn‖2 = ‖ρ0‖2 exp (|σ1| ‖ρ0‖L∞ t) .

(4.6)

Proof. We proceed by induction. Let S(k) be the statement that (4.4) holds for n = k.
Certainly, S(0) holds trivially. Assume that S(n − 1) holds. We will use this to show that
S(n) holds.

From (3.9) (with ξ = ρn, f = ρn−1) we have

‖ρn(t)‖Lq ≤ ‖ρ0‖Lq exp

(
|q−1σ1 + σ2|

∫ t

0
‖ρn−1(s)‖L∞ ds

)
. (4.7)

Now, by the induction hypothesis,∫ t

0
‖ρn−1(s)‖L∞ ds ≤

∫ t

0

‖ρ0‖L∞
1− |σ2| ‖ρ0‖L∞ s

ds

=

{
−|σ2|−1 log (1− |σ2| ‖ρ0‖L∞ t) , σ2 6= 0,

‖ρ0‖L∞ t, σ2 = 0.

Taking the limit as q → ∞ of both sides of (4.7), it follows by the continuity of Lebesgue
norms that for σ2 6= 0,

‖ρn(t)‖L∞ ≤ ‖ρ0‖L∞ exp (− log (1− |σ2| ‖ρ0‖L∞ t)) = ‖ρ0‖L∞ (1− |σ2| ‖ρ0‖L∞ t)
−1 ,

and ‖ρn(t)‖L∞ ≤ ‖ρ0‖L∞ if σ2 = 0. Thus, S(n− 1) =⇒ S(n), and we see by induction that
in fact S(n) holds for all n.

Returning to (4.7), we see that (4.5)1 and (4.6)1 hold.
The bounds in (4.5)2, (4.6)2 follow by the same argument specifically for q = 2 and using

the energy bound in (3.10). �

Theorem 4.5. Fix T > 0 with T < (|σ2| ‖ρ0‖L∞)−1 or T < ∞ if σ2 = 0. (Note that [0, T ]
is within the time of existence for the inviscid problem—see Theorem 5.7). Let ν > 0 and
assume that ρ0 ∈ L∞ ∩ L2

N for some N > 1 + d/2. Then there exists a weak solution to
(GAGν) as in Definition 4.1 on the time interval [0, T ] with

‖ρν(t)‖L∞ ≤
‖ρ0‖L∞

1− |σ2| ‖ρ0‖L∞ t
. (4.8)
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When σ2 6= 0, we have

‖ρν(t)‖Lq ≤ ‖ρ0‖Lq (1− |σ2| ‖ρ0‖L∞ t)
−| σ1

qσ2
+1| ∀ q ∈ [1,∞),

‖ρν(t)‖2 + 2ν

∫ t

0
‖∇ρν‖2 ≤ ‖ρ0‖2 (1− |σ2| ‖ρ0‖L∞ t)

−|σ1
σ2

+2|
.

(4.9)

When σ2 = 0, we have

‖ρν(t)‖Lq ≤ ‖ρ0‖Lq exp
(
|σ1|q−1 ‖ρ0‖L∞ t

)
∀ q ∈ [1,∞),

‖ρν(t)‖2 + 2ν

∫ t

0
‖∇ρν‖2 ≤ ‖ρ0‖2 exp (|σ1| ‖ρ0‖L∞ t) .

(4.10)

Further, if ρ0 ∈ Hk
N for a positive integer k then ρν ∈ Y k

N . (The space Y k
N is defined in

Theorem 3.6.)

Proof. Because of the bounds in Proposition 4.4, we can make a standard argument to prove
the existence of solutions along the same lines as that for the existence of solutions to the
Navier-Stokes equations (for instance, see pages 72-73 of [9]). For completeness, we give a
full argument here.

Let ρ0,j(t, x) = η1/j ∗ ρ0(x), j = 1, 2, . . . , where η is a Friedrich’s mollifier and note that

ρ0,j ∈ Y m
N for all m ≥ 0. Let (ρ

(j)
n ) be the sequence of linear solutions defined in (4.3), but

with the starting solution being ρ0,j instead of ρ0. Note that ρ
(j)
n ∈ Y m

N for all m ≥ 0 as well

by Theorem 3.6. Then define ρn := ρ
(n)
n .

By Proposition 4.4 and Theorem 3.5 we see that (ρn) is bounded in L∞(0, T ;L2
N ) ∩

L2(0, T ;H1
N ) ⊆ L2(0, T ;H1). But L2(0, T ;H1) is weakly compact, so (ρn) converges weakly

to some ρ in L2(0, T ;H1). The compact embedding given by Lemma 2.4 implies that some
subsequence of (ρn), which we relabel as (ρn), converges strongly to ρ in L2(0, T ;L2

M ) for all
M < N ; hence also ρn(t)→ ρ(t) in L2

M for all M < N for almost all t ∈ [0, T ]. Moreover, by
the uniqueness of limits, Lemma 2.4 also gives that ρ(t) ∈ L2

N for almost all t in [0, T ].

Let ϕ ∈ C∞c ((0, T )×Rd). Then using (2) of Theorem 3.3, since each ρn is a weak solution
as in Definition 3.1 with f = ρn−1, we have

0 = lim
n→∞

∫ T

0

∫
Rd

(
ρn∂tϕ+ ρnvρn−1 · ∇ϕ+ (σ1 + σ2)ρn−1ρnϕ− ν∇ρn · ∇ϕ

)
.

Now, ρn and ρn−1 are each bounded in L1 ∩ L∞ by Proposition 4.4, and vρn−1 is bounded
in L∞ as well by (2) of Lemma 2.2. This allows us to apply the dominated convergence
theorem to the first three terms. We can then take the limit as n approaches infinity, using
ρn(t), ρn−1(t)→ ρ(t) in L2

M (and thus in L2) and for almost all t ∈ [0, T ]. By (1) and (4) of
Lemma 2.2, vρn−1(t)→ v(t) in L∞ for almost all t ∈ [0, T ], and we conclude that

0 = lim
n→∞

∫ T

0

∫
Rd

(
ρn∂tϕ+ ρnvρn−1 · ∇ϕ+ (σ1 + σ2)ρn−1ρnϕ− ν∇ρn · ∇ϕ

)
=

∫ T

0

∫
Rd

(
ρ∂tϕ+ ρv · ∇ϕ+ (σ1 + σ2)ρ

2ϕ− ν∇ρ · ∇ϕ
)
.

Here, we also used that ρn → ρ weakly in L2(0, T ;H1).
By Proposition 4.4, (ρn) is uniformly bounded in L∞([0, T ]×Rd). Hence ρ ∈ L∞([0, T ]×

Rd). Since ρn(0) → ρ0 in L2, it follows from Theorem 4.2 that ρν = ρ is a weak solution to
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(GAGν) as in Definition 4.1. Then for all q ≥ 2,

‖ρ(t)‖Lq ≤ ‖ρ(t)− ρn(t)‖Lq + ‖ρn(t)‖Lq

≤ ‖ρ(t)− ρn(t)‖
2
q (‖ρ(t)‖L∞ + ‖ρn(t)‖L∞)

q−2
q + ‖ρn(t)‖Lq .

Taking the limit as n → ∞ and using the bounds in (4.5) and (4.6) gives (4.9) and (4.10)
for q ∈ (2,∞) and then, by the continuity of Lebesgue norm, we obtain (4.8). For q = 2,
(4.9) and (4.10) follow directly from (4.5) and (4.6), using also that the convergence of ρn to
ρ weakly in L2(0, T ;H1) implies that ‖ρn‖L2(0,T ;H1) → ‖ρ‖L2(0,T ;H1). For q ∈ [1, 2) we apply

(1) of Lemma 2.2 to show that ‖ρ(t)− ρn(t)‖Lq → 0 and so obtain (4.9) and (4.10).

That ρ0 ∈ Y k
N implies ρν ∈ Y k

N follows similarly using Theorem 3.6. �

Uniqueness of solutions to (GAGν), even for higher regularity solutions, is not an entirely
simple matter. It will follow as a consequence of our proofs of the vanishing limit in Sections 7
and 8 (see Theorem 7.5).

5. The inviscid problem

Establishing existence and uniqueness of weak solutions in Eulerian variables as formulated
in Definition 4.1 is quite difficult. This is in contrast to the 2D Euler equations, for which
existence of solutions for bounded initial vorticity can be established quite easily using a se-
quence of solutions to the Navier-Stokes equations. This argument for the 2D Euler equations
is possible because the Lp-norms of the Navier-Stokes vorticity ω can be bounded uniformly
over viscosity in the whole plane (or in a bounded domain if ω = u · n = 0 is used as a
boundary condition; see, for instance, Section 4.1 of [18] for the bounded domain argument).
Then a weak solution to the Euler equations can be obtained using the velocity formulation.
A velocity formulation of (GAGν) is possible as we briefly describe in Section 10, but a long
detour into developing properties of the pressure is required in order to properly develop a
weak formulation.

Instead, we will work with Lagrangian solutions, adapting the economical and elegant
proofs for 2D solutions to the Euler equations given by Marchioro and Pulvirenti in [21],
which originates in their earlier text [20]. We will also use some of the ideas from Chapter 8
of [19].

In [3], the authors obtain well-posedness in the special case of (AG0). Their approach could
in principle be extended to the more general equations in (GAG0). In brief, the authors of
[3] first construct smooth solutions then use an approximating sequence of such solutions to
obtain a Lagrangian solution by demonstrating convergence of the flow maps (as in [19]). This
approach is reversed in [21], where Lagrangian solutions are first constructed by obtaining
the convergence of a sequence of flow maps for approximating linearizations of the 2D Euler
equations. A very simple argument then shows that regularity of the initial data is propagated
over time.

Considerable complications arise when adapting Marchioro and Pulvirenti’s arguments for
(GAG0) because the underlying velocity field is not divergence-free (analogous complications
are dealt with in [3]). This requires the assumption of some regularity on the initial data to
obtain weak solutions, removing this assumption a posteriori via a separate argument similar
to the proof of existence in Chapter 8 of [19].

Before giving the proof of well-posedness of inviscid solutions, let us motiviate our definition
of a Lagrangian solution by observing formally that if ρ = ρ0 solves (GAG0) and X is the



THE AGGREGATION EQUATION VANISHING VISCOSITY LIMIT 21

flow map for v = v0 then

d

dt
ρ(t,X(t, x)) = σ2ρ(t,X(t, x))2.

Integrating along flow lines gives

ρ(t,X(t, x)) =
ρ0(x)

1− σ2tρ0(x)
. (5.1)

This motivates the following definition of a Lagrangian solution to (GAG0):

Definition 5.1. Fix T > 0. Let X : [0, T ]× Rd → Rd with X(t, ·) a homeomorphism for all
t ∈ [0, T ] and let ρ0 ∈ L∞(Rd). Define ρ : [0, T ]× Rd → R by

ρ(t, x) =
ρ0(X

−1(t, x))

1− σ2tρ0(X−1(t, x))
(5.2)

and let v := σ1∇Φ∗ρ. Here, X−1 is defined by X−1(t,X(t, x)) = x for all (t, x) ∈ [0, T ]×Rd.
Then X or more fully (X, ρ,v) is a Lagrangian solution to the inviscid generalized aggregation
equations (GAG0) with initial density ρ0 if X is the flow map for v; that is, if

X(t, x) = x+

∫ t

0
v(s,X(s, x)) ds

for all t ≥ 0, x ∈ Rd.

The form of ρ in (5.1) or (5.2) also yields a sharp time of existence for our Lagrangian
solutions. If we do not consider the sign of ρ0 we obtain an upper limit on the existence time
that is the same as that for viscous solutions in Theorem 4.5. Hence we should expect that
if say, σ2 < 0 and ρ0 > 0, so that the inviscid solution exists for all time, then the existence
time for viscous solutions might be considerably longer than the bound given in Theorem 4.5.
An open question is whether, for all sufficiently small viscosity, viscous solutions to (GAGν)
exist for as long as the inviscid solution exists, as was established for the 3D Navier-Stokes
and Euler equations in [8]. Because we do not assume that the initial data has a distinguished
sign that is compatible with the signs of σ1, σ2, we do not have a maximum or comparison
principle. This is what makes this a difficult problem. (Issues of existence times of viscous
solutions in relation to the total mass of ρ0 have been well-studied for (AGν): see Sections
5.2 and 5.3 of [23].)

We will need the following simple proposition that shows that the Lebesgue norms of the
density of Lagrangian solutions depend only upon the initial density and time.

Proposition 5.2. Let (X, ρ,v) be a Lagrangian solution as in Definition 5.1 with initial
density ρ0 ∈ L1 ∩ L∞. If T < (|σ2|‖ρ0‖L∞)−1 or T <∞ if σ2 = 0, then for all t ∈ [0, T ], we
have

‖ρ(t)‖L∞ ≤
‖ρ0‖L∞

1− |σ2| ‖ρ0‖L∞ t
, (5.3)

and for all q ∈ [1,∞),

‖ρ(t)‖Lq ≤

{
‖ρ0‖Lq (1− |σ2| ‖ρ0‖L∞ t)

− σ1
qσ2
−1
, σ2 6= 0,

‖ρ0‖Lq exp
(
|σ1|q−1 ‖ρ0‖L∞ t

)
, σ2 = 0.

(5.4)

Moreover, ‖v(t)‖L∞ ≤ C0(T ) for all t ∈ [0, T ], and if ρ0 is compactly supported, then there
exists R = R(T ) such that ρ(t) remains supported in BR(T )(0) for all t ∈ [0, T ].
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Proof. The bound in (5.3) follows immediately from (5.2). For q ∈ [1,∞), we have

‖ρ(t)‖Lq =

(∫
Rd

∣∣∣ ρ0(y)

1− σ2tρ0(y)

∣∣∣q|det∇X(t, y)| dy
) 1
q

,

where we made the change of variables x = X(t, y). But

∂s det∇X(s, y) = div v(s,X(s, y)) det∇X(s, y) = σ1ρ(s,X(s, y)) det∇X(s, y)

=
σ1ρ0(y)

1− σ2sρ0(y)
det∇X(s, y)

(5.5)

(see, for instance, page 3 of [7]) so that

J(t, y) := det∇X(t, y) =

{
(1− σ2tρ0(y))

−σ1
σ2 , σ2 6= 0,

eσ1ρ0(y)t, σ2 = 0.
(5.6)

Hence when σ2 6= 0,

‖ρ(t)‖Lq =

(∫
Rd
|ρ0(y)|q(1− σ2tρ0(y))

−σ1
σ1
−q
dy

) 1
q

≤ ‖ρ0‖Lq (1− |σ2| ‖ρ0‖L∞ t)
− σ1
qσ2
−1
.

This, with the analogous bound for σ2 = 0, gives (5.4). Then ‖v(t)‖L∞ ≤ C0(T ) for all
t ∈ [0, T ] follows from (5.3), (5.4) for q = 1, and (2.2). The bound on the velocity then
immediately yields the bound on the compact support of ρ(t). �

In what follows, we make use of three lemmas that appear at the end of this section as
well as Lemma 9.5, which we defer to Section 9 because we use Littlewood-Paley theory in
its proof.

We start by showing that a Lagrangian solution—if it exists—maintains the Hölder regu-
larity of the initial density.

Theorem 5.3. Let ρ0 ∈ Ck,α(Rd)∩L1(Rd) for some integer k ≥ 0 and α ∈ (0, 1). Fix T > 0
with T < (|σ2|‖ρ0‖L∞)−1 or T < ∞ if σ2 = 0. Assume that ρ is a Lagrangian solution to
(GAG0) on the interval [0, T ]. Then ρ ∈ L∞(0, T ;Ck,α). Moreover,

‖ρ(t)‖Ck,α ≤ C(t, |σ1|, ‖ρ0‖L1 , ‖ρ0‖Ck,α), (5.7)

and when k ≥ 1, ρ is a classical solution with ρ ∈ Ck(0, T ;Ck,α).

Proof. It follows (as in Theorem 5.1.1 of [7]) that x 7→ X(t, x)−x has norm 1 in Cθ(t), where
θ(t) = e−c0t, c0 = C0(T ) ‖ρ0‖L1∩L∞ , and this same bound holds for the inverse flow map.
Thus, by Lemma 5.9,

ρ(t) ∈ Cαθ(t),

with

‖ρ(t)‖Cαθ(t) = ‖ρ(t)‖L∞ + ‖ρ(t)‖Ċαθ(t) ≤ C0(T ) ‖ρ0‖L∞ + C0(T ) ‖ρ0‖Ċα
∥∥X−1(t)∥∥α

Ċθ(t)

≤ C0(T ) ‖ρ0‖L∞ + C0(T ) ‖ρ0‖Ċα = C0(T ) ‖ρ0‖Cα .

Hence by Lemma 9.5, v(t) = σ1∇Φ ∗ ρ(t) ∈ C1,αθ(t) with

‖∇v(t)‖Cαθ(t) ≤ C ‖ρ(t)‖L1 + C ‖ρ(t)‖Cαθ(t) ≤ C0(T ) (‖ρ0‖L1 + ‖ρ0‖Cα) , (5.8)

where we also used Proposition 5.2.
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Because v is differentiable, it follows that

∇X(t, x) = I +

∫ t

0
∇v(s,X(s, x)) · ∇X(s, x) ds

so that

‖∇X(t)‖L∞ ≤ 1 +

∫ t

0
‖∇v(s)‖L∞ ‖∇X(s)‖L∞ ds. (5.9)

Applying Lemma 1.2 (Grönwall’s lemma) and using (5.8), we see that ∇X(t) ∈ L∞ with

‖∇X(t)‖L∞ ≤ C(T, |σ1|, ‖ρ0‖L1 , ‖ρ0‖Cα) = C0(T ).

Hence, by Lemma 5.9 we actually have that ρ(t) ∈ Cα, with

‖ρ(t)‖Ċα ≤ C0(T ) ‖ρ0‖Ċα ‖∇X(t)‖αL∞ ≤ C0(T ).

By Lemma 9.5, then, v(t) ∈ C1,α.
For higher regularity, k ≥ 1, we observe that for all x, y ∈ Rd,

1

1− σ2tρ0(X−1(t, x))
− 1

1− σ2tρ0(X−1(t, y))
=

σ2t
(
ρ0(X

−1(t, x))− ρ0(X−1(t, y))
)

(1− σ2tρ0(X−1(t, x)))(1− σ2tρ0(X−1(t, y)))
.

Thus, when ∇X−1 ∈ L∞(Rd) and ρ0 ∈ Cα(Rd) we have (1 − σ2tρ0(X−1(t, x)))−1 ∈ Cα(Rd)
as well. This observation combined with the fact that Cα is a Banach algebra allows us to
apply a bootstrap argument analogous to that in [21] to obtain regularity for k ≥ 1.

Finally, when k ≥ 1 we have ∂tρ = −v · ∇ρ+ σ2ρ
2 exists for all time so ρ is differentiable

in time. Therefore, ρ is a classical solution to (GAG0). �

We show in Theorem 5.4 that a Lagrangian solution exists. It will be convenient in Theo-
rem 5.4 to assume the initial density is compactly supported.

Theorem 5.4. Fix T > 0 with T < (|σ2| ‖ρ0‖L∞)−1 or T < ∞ if σ2 = 0. Let ρ0 ∈ L∞(Rd)
be compactly supported. There exists a Lagrangian solution ρ to (GAG0) as in Definition 5.1.

Proof. We first prove the existence of a Lagrangian solution assuming that ρ0 ∈ Ck,α(Rd) for
some integer k ≥ 1 and α ∈ (0, 1) with ρ0 compactly supported.

We define sequences (ρn)∞n=0, (vn)∞n=1, and (Xn)∞n=0 as follows:

ρ0(t, ·) = ρ0(x),

X0(t, x) = x,

with the iteration, for n = 1, 2, . . . ,

vn = σ1∇Φ ∗ ρn−1,
∂tXn(t, x) = vn(t,Xn(t, x)),

ρn(t,Xn(t, x)) =
ρ0(x)

1− σ2tρ0(x)
.

(5.10)

Thus, vn is the unique curl-free vector field whose divergence is ρn−1, and Xn is the (non-
measure-preserving) flow map for vn. To see that Xn exists, note that vn(t) has a log-
Lipschitz MOC µ that depends only upon ‖ρn−1(t)‖L1∩L∞ by (2.2). But the coarse bound

‖ρn(t)‖L1∩L∞ ≤
‖ρ0‖L1∩L∞

1− |σ2|t ‖ρ0‖L∞
≤ C0(T ) for all n (5.11)
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follows from (5.10)3. Hence the MOC, which we can write as

µ(r) =

{
−C0r log r if r < e−1,

C0e
−1 if r ≥ e−1,

(5.12)

applies uniformly over n and all t ∈ [0, T ]. The existence and uniqueness of the flow map Xn

is then classical. (See, for instance, Section 5.2 of [7].) We also define the inverse flow map
(Xn)−1 by

(Xn)−1(t,Xn(t, x)) = x,

so that

ρn(t, x) =
ρ0((X

n)−1(t, x))

1− σ2tρ0((Xn)−1(t, x))
. (5.13)

The proof of existence proceeds by showing that the iteration in (5.10) converges to a
Lagrangian solution. First observe that

‖vn(t)‖L∞ ≤ C ‖ρn−1(s)‖L1∩L∞ ≤ C0(T ), supp ρn(t) ⊆ BR(T )(0) for all t ∈ [0, T ] (5.14)

for some R(T ) < ∞ and all n follows, as in the proof of Proposition 5.2, from the bound
on the density in (5.11), which yields a bound on the LL-norm of the velocity from (2.2),
which then yields the bound on the compact support of ρn(t). It follows as in the proof of
Theorem 5.3 that ‖ρn(t)‖Cαθ(t) ≤ C0(T ) ‖ρ0‖Cα . Thus by Lemma 9.5,

‖∇vn(s)‖L∞ ≤ C ‖ρn−1(s)‖L1 + C(θ(s)) ‖ρn−1(s)‖Cαθ(s) ≤ C0(T ) + C0(T ) ‖ρ0‖Cα
≤ C0(T ).

Also

∂t∇Xn(t, x) = ∇vn(t,Xn(t, x))∇Xn(t, x).

Integrating in time, taking the L∞-norm, and applying Lemma 1.2 (Grönwall’s lemma) gives

‖∇Xn(t, ·)‖L∞ ,
∥∥∇(Xn)−1(t, ·)

∥∥
L∞
≤ exp

∫ t

0
‖∇vn(s)‖L∞ ds ≤ C0(T ).

The bound on ∇(Xn)−1 does not follow as immediately as that on ∇Xn because the flow is
not autonomous. For the details see for instance the proof of Lemma 8.2 p. 318-319 of [19].

Moreover, a direct calculation gives

∇ρn(t, x) =
(1 + σ2t)∇ρ0((Xn)−1(t, x))∇(Xn)−1(t, x) + σ2ρ0((X

n)−1(t, x))

1− σ2tρ0((Xn)−1(t, x))

so that

‖∇ρn(t)‖L∞ ≤ C0(T ) + C0(T ) ‖∇ρ0‖L∞
∥∥∇(Xn)−1(t)

∥∥
L∞
≤ C0(T ).

Hence for all n and all t ∈ [0, T ] we have

‖∇Xn(t, ·)‖L∞ ,
∥∥∇(Xn)−1(t, ·)

∥∥
L∞

, ‖∇ρn(t)‖L∞ ≤ C0(T ). (5.15)

Define, for n ≥ 1,

hn(t) = ‖Xn(t, ·)−Xn−1(t, ·)‖L∞ .

We will show that hn → 0 as n→∞.
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Fix n ≥ 2. We have

|Xn(t, x)−Xn−1(t, x)| ≤
∫ t

0
|vn(s,Xn(s, x))− vn(s,Xn−1(s, x))| ds

+

∫ t

0
|vn(s,Xn−1(s, x))− vn−1(s,Xn−1(s, x))| ds

=: I1 + I2.

Since vn is Lipschitz uniformly in n, I1 can be bounded as

I1 ≤
∫ t

0
‖∇vn(s)‖L∞ |Xn(s, x)−Xn−1(s, x)| ds ≤ C0(T )

∫ t

0
hn(s) ds. (5.16)

For I2, we first note that the bound on the support of each ρi in (5.14) gives ‖ρn−1(s)− ρn(s)‖L1 ≤
C0(T ) ‖ρn−1(s)− ρn(s)‖L∞ . Taking advantage of (2.2) then we have

|vn(s,Xn−1(s, x))− vn−1(s,Xn−1(s, x))|
= |σ1||(∇Φ ∗ ρn−1)(s,Xn−1(s, x))− (∇Φ ∗ ρn−2)(s,Xn−1(s, x))|
≤ |σ1| ‖∇Φ ∗ ρn−1(s)−∇Φ ∗ ρn−2(s)‖L∞ ≤ C ‖(ρn−1 − ρn−2)(s)‖L1∩L∞

≤ C0(T ) ‖(ρn−1 − ρn−2)(s)‖L∞ = C0(T ) sup
x∈Rd
|ρn−1(s,Xn−2(s, x))− ρn−2(s,Xn−2(s, x))|.

Now,

|ρn−1(s,Xn−2(s, x))− ρn−2(s,Xn−2(s, x))|

=

∣∣∣∣ρn−1(s,Xn−2(s, x))− ρ0(x)

1− σ2sρ0(x)

∣∣∣∣
= |ρn−1(s,Xn−2(s, x))− ρn−1(s,Xn−1(s, x))|
≤ ‖∇ρn−1(s)‖L∞ ‖Xn−2(s, ·)−Xn−1(s, ·)‖L∞ = ‖∇ρn−1(s)‖L∞ hn−1(s)
≤ C0(T )hn−1(s),

(5.17)

where we used (5.15) in the last inequality. We conclude that

I2 ≤ C0(T )

∫ t

0
hn−1(s) ds. (5.18)

Thus, on [0, T ] we have,

hn(t) ≤ C0(T )

∫ t

0
(hn−1(s) + hn(s)) ds. (5.19)

For any k ≥ 2 define

δk(t) = sup
n≥k−1

hn(t).

Then by (5.19), for all j ≥ 0,

hk+j(t) ≤ C0(T )

∫ t

0
(max{hk+j−1(s), hk+j(s)}) ds ≤ C0(T )

∫ t

0
δk(s) ds

and hence

δk+1(t) ≤ C0(T )

∫ t

0
δk(s) ds.
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Iterating this inequality we obtain

δk(t) ≤ (C0(T )T )k−1

(k − 2)!
(5.20)

for all t ≤ T , where we used the bound

δ2(t) = sup
n≥1
‖Xn(t)−Xn−1(t)‖L∞ ≤ CT sup

n≥1
‖vn(t)‖ ≤ CT‖ρ0‖L1∩L∞ .

The bound in (5.20) guarantees that δN is Cauchy on [0, T ], so that (Xn) converges in
L∞((0, T )×Rd) to some X. It follows as well from (5.17) that (ρn) is Cauchy in L∞((0, T )×
Rd), since we have, for m, n ∈ N,

|ρn(s,Xm(s, x))− ρm(s,Xm(s, x))| = |ρn(s,Xm(s, x))− ρn(s,Xn(s, x))|
≤ ‖∇ρn(s)‖L∞‖Xm −Xn‖L∞((0,T )×Rd).

Therefore, ρn converges in L∞((0, T )× Rd) to some ρ. But then

ρ(t, x) = lim
n→∞

ρn(t, x) = lim
n→∞

ρ0(X
−1
n (t, x))

1− σ2tρ0(X−1n (t, x))
=

ρ0(X
−1(t, x))

1− σ2tρ0(X−1(t, x))
,

since ρ0 is continuous by assumption. Setting v := σ1∇Φ ∗ ρ, we conclude from (2.2) and the
uniform bound in n on the supports of ρn that

‖vn − v‖L∞(0,T ;L∞(Rd)) ≤ C(T )‖ρn − ρ‖L∞(0,T ;L∞(Rd)).

This convergence along with the convergence of (Xn) to X in L∞((0, T ) × Rd) allow us to
conclude that for any (t, x) in [0, T ]× Rd,

X(t, x) = lim
n→∞

Xn(t, x) = x+ lim
n→∞

∫ t

0
vn(s,Xn(s, x)) ds = x+

∫ t

0
v(s,X(s, x)) ds.

Thus, v is the velocity whose flow map is X. We conclude that (X, ρ,v) is a Lagrangian
solution.

Now assume only that ρ0 ∈ L∞(Rd) and is compactly supported. Because the constant
C0(T ) in (5.20) depends in part on ‖∇ρ0‖L∞ , we cannot directly use it to prove the existence
of weak solutions for initial densities lacking regularity. Instead we let ρ0,ε = ηε ∗ ρ0 where ηε
is a Friedrich’s mollifier, noting that ρ0,ε is compactly supported. We can then let (Xε, ρε,vε)
be the Lagrangian solution with initial density ρ0,ε, which we know exists by the preceding
argument. Observe that ρ0,ε → ρ0 in Lp for all p ∈ [1,∞), so, by (3) of Lemma 2.2,

v0,ε := ∇Φ ∗ ρ0,ε → ∇Φ ∗ ρ0 := v0 in Lp for all p ∈
(

d
d−1 ,∞

)
.

As in Lemma 8.2 of [19], the family (Xε) is equicontinuous in compact subsets of space
and time, because their common modulus of continuity depends only upon ‖ρε‖L∞(0,T ;L1∩L∞),

which is uniformly bounded over ε by Proposition 5.2. Therefore, there exists some flow map
X and some subsequence of (Xε) that we relabel as (Xn) (abusing notation) with Xn → X
uniformly on compact subsets of [0, T ]× Rd.

Fix t ∈ [0, T ]. Defining ρ by the expression in (5.2), we see that

ρ(t,x)− ρn(t, x) =
ρ0(X

−1(t, x))− ρ0(X−1n (t, x))

(1− σ2tρ0(X−1(t, x)))(1− σ2tρ0(X−1n (t, x)))
.

The denominator is bounded below up to time T , so, for any p ∈ [1,∞),

‖ρ(t, x)− ρn(t, x)‖Lpx ≤ C0(T )
∥∥ρ0(X−1(t, x))− ρ0(X−1n (t, x))

∥∥
Lpx
→ 0
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by the continuity of the Lp-norm under translation for p ∈ [1,∞). (For an explicit proof,
see Lemma 8.2 of [14].) It follows by (3) of Lemma 2.2 that vn(t) is Cauchy and therefore

converges to some v(t) in Lp(Rd) for any p ∈
(

d
d−1 ,∞

)
. But again by (3) of Lemma 2.2,

vn(t) = σ1∇Φ ∗ ρn−1(t)→ σ1∇Φ ∗ ρ(t) in Lp(Rd) for any p ∈
(

d
d−1 ,∞

)
so v = σ1∇Φ ∗ ρ(t).

In particular, v(0) = v0 so ρ(0) = ρ0.
Finally, for any (t, x) in a fixed compact subset K of [0, T ]× Rd,

X(t, x) = lim
n→∞

Xn(t, x) = x+ lim
n→∞

∫ t

0
vn(s,Xn(s, x)) ds = x+

∫ t

0
v(s,X(s, x)) ds

by the dominated convergence theorem (for any fixed x ∈ Rd, |vn(·, Xn(·, x))| ≤ C0(T ) and
so is dominated in L1((0, T ))) and the continuity of vn in space. Thus, X is the flow map
for v, and we can conclude that (X, ρ,v) is a Lagrangian solution as in Definition 5.1. �

Theorem 5.5. If (X, ρ,v) is a Lagrangian solution as in Definition 5.1 then ρ is a weak
(Eulerian) solution as in Definition 4.1 for ν = 0. As a partial converse, suppose that ρ is
a weak solution as in Definition 4.1 for ν = 0 with ρ ∈ Ck(0, T ;Ck,α) for some k ≥ 1. Let
v = ∇Φ ∗ ρ, X be the flow map for v and let

r(t, x) :=
ρ0(X

−1(t, x))

1− σ2tρ0(X−1(t, x))
, (5.21)

so that (X, r,v) is a Lagrangian solution as in Definition 5.1. Then r is also a weak solution.

Proof. Let (X, ρ,v) be a Lagrangian solution. If we make the change of variables x = X(t, y)
then

ρ(t, x) =
ρ0(y)

1− σ2tρ0(y)
, ∂tρ(t, x) =

σ2ρ0(y)2

(1− σ2tρ0(y))2
. (5.22)

Using (5.5) and (5.6) we have for any ϕ ∈ C∞c ((0, T )× Rd)∫ T

0

∫
Rd

(
ρ(t, x)∂tϕ(t, x) + ρ(t, x)(v · ∇ϕ)(t, x) + (σ1 + σ2)ρ(t, x)2ϕ(t, x) dx dt

)
=

∫ T

0

∫
Rd

ρ0(y)

1− σ2tρ0(y)
(∂tϕ+ v · ∇ϕ)(t,X(t, y))) J(t, y) dy dt

+ (σ1 + σ2)

∫ T

0

∫
Rd

(
ρ0(y)

1− σ2tρ0(y)

)2

ϕ(t,X(t, y))J(t, y) dy dt.

But

(∂tϕ+ v · ∇ϕ)(t,X(t, y)) =
d

dt
ϕ(t,X(t, y))

so ∫ T

0

∫
Rd

ρ0(y)

1− σ2tρ0(y)
(∂tϕ+ v · ∇ϕ)(t,X(t, y))) J(t, y) dy dt

= −
∫ T

0

∫
Rd

∂

∂t

(
ρ0(y)

1− σ2tρ0(y)
J(t, y)

)
ϕ(t,X(t, y)) dy dt.
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Then for σ2 6= 0,

∂

∂t

(
ρ0(y)

1− σ2tρ0(y)
J(t, y)

)
=

∂

∂t

(
ρ0(y)(1− σ2tρ0(y))

−σ1+σ2
σ2

)
= (σ1 + σ2)ρ0(y)2(1− σ2tρ0(y))

−σ1+2σ2
σ2

= (σ1 + σ2)

(
ρ0(y)

1− σ2tρ0(y)

)2

J(t, y).

We see then that∫ T

0

∫
Rd

(
ρ(t, x)∂tϕ(t, x) + ρ(t, x)(v · ∇ϕ)(t, x) + (σ1 + σ2)ρ(t, x)2ϕ(t, x) dx dt

)
= 0,

meaning by Theorem 4.2 that ρ is a weak solution as in Definition 4.1. That this also holds
for σ2 = 0 follows similarly or simply by taking the limit as σ2 → 0 in the calculations above.

Now let ρ be a weak solution as in Definition 4.1 with ρ ∈ Ck(0, T ;Ck,α) for some k ≥ 1,
and let X be the flow map for v := ∇Φ ∗ ρ, which we note exists and is unique. Then define
r as in (5.21). Making the change of variables x = X(t, y) as above, we see that for any
ϕ ∈ C∞c ((0, T )× Rd),∫ T

0

∫
Rd

(
r(t, x)∂tϕ(t, x) + r(t, x)(v · ∇ϕ)(t, x) + (σ1 + σ2)r(t, x)2ϕ(t, x) dx dt

)
= 0,

meaning that, by Theorem 4.2, r is an Eulerian solution as in Definition 4.1. Note that to
justify the change of variables we needed higher time regularity of ρ than that of a weak
solution. �

Theorems 5.3 to 5.5 taken together show that, as long as the initial density has some
regularity, we are assured of at least one solution to (GAGν), and that solution is both a
Lagrangian and an Eulerian (weak) solution. Moreover, the solution maintains the spatial
regularity it had at time zero. Next, we prove uniqueness of Lagrangian solutions (and so of
our Eulerian solutions as well for higher regularity).

Theorem 5.6. Fix T > 0 with T < (|σ2| ‖ρ0‖L∞)−1 or T < ∞ if σ2 = 0 and assume that

ρ0 ∈ L∞(Rd) and is compactly supported. Then there exists at most one Lagrangian solution
to (GAG0) as in Definition 5.1 having the same initial density.

Proof. Suppose that ρ1, ρ2 are two Lagrangian solutions as in Definition 5.1 having the same
initial density, ρ0. Define

h(t) = ‖X2(t, ·)−X1(t, ·)‖L∞ ,
where Xj is the flow map for vj := σ1∇Φ ∗ ρj . Then

|X2(t, x)−X1(t, x)| ≤
∫ t

0
|v2(s,X2(s, x))− v2(s,X1(s, x))| ds

+

∫ t

0
|v2(s,X1(s, x))− v1(s,X1(s, x))| ds

=: I1 + I2.

By Proposition 5.2 and (2.2), v1(t), v2(t) have a log-Lipschitz MOC µ as in (5.12). Then
I1 can be bounded as

I1 ≤
∫ t

0
µ (|X2(s, x)−X1(s, x)|) ds ≤

∫ t

0
µ (h(s)) ds.
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(We used that µ is nondecreasing in this bound.)
For I2, we set z = X1(s, x) and write

v2(s,X1(s, x))− v1(s,X1(s, x))

= σ1[∇Φ ∗ ρ2(s)](z)− σ1[∇Φ ∗ ρ1(s)](z)

= σ1

∫
Rd
∇Φ(z − y)ρ2(s, y) dy − σ1

∫
Rd
∇Φ(z − y)ρ1(s, y) dy

= σ1

∫
Rd
∇Φ(z − y)

ρ0((X2)
−1(s, y))

1− σ2sρ0((X2)−1(s, y))
dy

− σ1
∫
Rd
∇Φ(z − y)

ρ0((X1)
−1(s, y))

1− σ2sρ0((X1)−1(s, y))
dy

= σ1

∫
Rd
∇Φ(z −X2(s, y))

ρ0(y)

1− σ2sρ0(y)
det∇X2(s, y) dy

− σ1
∫
Rd
∇Φ(z −X1(s, y))

ρ0(y)

1− σ2sρ0(y)
det∇X1(s, y) dy.

(5.23)

Using the expression for det∇Xj as in (5.6),

v2(s,X1(s, x))− v1(s,X1(s, x))

= σ1

∫
Rd

(∇Φ(z −X2(s, y))−∇Φ(z −X1(s, y))) ρ0(y)(1− σ2sρ0(y))
−σ1
σ2
−1
dy

(5.24)

when σ2 6= 0, and

v2(s,X1(s, x))− v1(s,X1(s, x))

= σ1

∫
Rd

(∇Φ(z −X2(s, y))−∇Φ(z −X1(s, y))) ρ0(y)eσ1ρ0(y)s dy

when σ2 = 0. In both cases, by Proposition 5.2 and Lemma 5.11, we have

I2 ≤ C0(T )

∫ t

0
‖(∇Φ(z −X2(s, y))−∇Φ(z −X1(s, y)))ρ0(y)‖L1

y(supp ρ0(y))
ds

≤ C0(T )

∫ t

0
µ(h(s)) ds.

Combining these estimates gives

h(t) ≤ C(T, |σ1|, |σ2|, ‖ρ0‖L1∩L∞ , |supp ρ0|)
∫ t

0
µ (h(s)) ds (5.25)

up to time T . Uniqueness of the Lagrangian solutions then follows immediately from Osgood’s
lemma, since µ is an Osgood modulus of continuity. �

Taken together, Theorems 5.3 to 5.6 give the following:

Theorem 5.7. Fix T > 0 with T < (|σ2| ‖ρ0‖L∞)−1 or T < ∞ if σ2 = 0. Let ρ0 ∈
L∞(Rd) be compactly supported. There exists a unique Lagrangian solution to (GAG0) as in
Definition 5.1, and (5.3) and (5.4) hold. Moreover, if also ρ0 ∈ Ck,α(Rd) for some k ≥ 0
and α ∈ (0, 1), then ρ ∈ L∞(0, T ;Ck,α), and (5.7) holds. When k ≥ 1, ρ ∈ Ck(0, T ;Ck,α) is
also the unique classical, Eulerian solution.
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Remark 5.8. It is easy to see that the solution as given in Theorem 5.7 can be extended
uniquely up to any t < T ∗, where T ∗ is the first time at which the denominator in (5.2)
reaches zero for some x ∈ Rd.

We used the following lemmas above.

Lemma 5.9. Let α, β ∈ (0, 1). Then for any real number C1,∥∥∥∥ f ◦ g
1− C1(f ◦ g)

∥∥∥∥
Ċαβ
≤ ‖(1− C1(f ◦ g))−1‖2L∞ ‖f‖Ċα ‖g‖

α
Ċβ
,∥∥∥∥ f ◦ g

1− C1(f ◦ g)

∥∥∥∥
Ċα
≤ ‖(1− C1(f ◦ g))−1‖2L∞ ‖f‖Ċα ‖∇g‖

α
L∞ .

(5.26)

Here, Ċα is the homogeneous Hölder space.

Proof. For (5.26)1, by a simple calculation we have for any x and y in Rd,

f(g(x))

1− C1(f(g(x)))
− f(g(y))

1− C1(f(g(y)))
=

f(g(x))− f(g(y))

(1− C1(f(g(x))))(1− C1(f(g(y))))
,

so that∥∥∥∥ f ◦ g
1− C1(f ◦ g)

∥∥∥∥
Ċαβ
≤ ‖(1− C1(f ◦ g))−1‖2L∞ sup

x 6=y

|f(g(x))− f(g(y))|
|g(x)− g(y)|α

(
|g(x)− g(y)|
|x− y|β

)α
≤ ‖(1− C1(f ◦ g))−1‖2L∞ ‖f‖Ċα ‖g‖

α
Ċβ
.

The same argument setting β = 1 yields (5.26)2. �

The ideas in the two lemmas that follow originated for 2D in [1].

Lemma 5.10. For x, y ∈ R2, we have

|Φ(x)− Φ(y)| = 1

2π

|x− y|
|x||y|

.

For x, y ∈ Rd, d ≥ 2.

|∇Φ(x)−∇Φ(y)| ≤ Cd
|x||y|

(
1

|x|
+

1

|y|

)d−2
|x− y|.

Proof. This result is well-known for d = 2. So assume that d ≥ 3. We have, for any x, y ∈ Rd,∣∣∣∣∣ x|x|d − y

|y|d

∣∣∣∣∣
2

=

∣∣∣∣∣ |y|dx− |x|dy|x|d|y|d

∣∣∣∣∣
2

=
|x|2|y|2d + |y|2|x|2d − 2x · y|x|d|y|d

|x|2d|y|2d

= |x|2|y|2 |y|
2(d−1) + |x|2(d−1) − 2x · y|x|d−2|y|d−2

|x|2d|y|2d
=
||x|d−2x− |y|d−2y|2

|x|2(d−1)|y|2(d−1)
.
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Hence, ∣∣∣∣∣ x|x|d − y

|y|d

∣∣∣∣∣ =
||x|d−2x− |y|d−2y|
|x|d−1|y|d−1

=
||x|d−2(x− y) + (|x|d−2 − |y|d−2)y|

|x|d−1|y|d−1

≤ |x− y|
|x||y|d−1

+
||x|d−2 − |y|d−2|
|x|d−1|y|d−2

=
|x− y|
|x||y|d−1

+
(|x| − |y|)(|x|d−3 + |x|d−4|y|+ |x||y|d−4 + |y|d−3)

|x|d−1|y|d−2

≤ |x− y|
|x||y|d−1

+ |x− y|
d−1∑
j=2

1

|x|j |y|d−j
.

But,

d−1∑
j=2

1

|x|j |y|d−j
=

1

|x||y|

d−2∑
j=1

1

|x|j |y|d−2−j
≤ Cd
|x||y|

(
1

|x|
+

1

|y|

)d−2
and (|x||y|d−1)−1 is bounded by the same quantity. Therefore,

|∇Φ(x)−∇Φ(y)| = Cd

∣∣∣∣∣ x|x|d − y

|y|d

∣∣∣∣∣ ≤ Cd
|x||y|

(
1

|x|
+

1

|y|

)d−2
|x− y|.

�

Lemma 5.11. Let X1 and X2 be homeomorphisms of Rd, d ≥ 2. Let δ = ‖X1 −X2‖L∞ and
suppose δ < e−1. Then, for any measurable subset U ⊂ Ω, with finite measure, there exists
C > 0, depending only on Ω, the measure of U , and d, such that

‖∇Φ(X1(x)− z)−∇Φ(X2(x)− z)‖L1
x(U) ≤ −Cδ log δ max

j=1,2
{‖ det∇X−1j ‖L∞}. (5.27)

Proof. Set A = ∇Φ(x−y1)−∇Φ(x−y2) and let p, q > 1, with p−1+q−1 = 1. Let a = |x−y1|,
b = |x− y2|, and note that |y1 − y2| ≤ a+ b. Then from Lemma 5.10,

A ≤ Cd
ab

(
1

a
+

1

b

)d−2
|y1 − y2|

1
p |y1 − y2|

1
q ≤ Cd

(ab)
1− 1

p

(
1

a
+

1

b

)d−2(a+ b

ab

) 1
p

|y1 − y2|
1
q

=
Cd

(ab)
1− 1

p

(
1

a
+

1

b

)d+ 1
p
−2
|y1 − y2|

1
q ≤ Cd

2

(
1

a
+

1

b

)d− 1
p

|y1 − y2|
1
q

≤ Cd2d−2−
1
p

(
1

a
d− 1

p

+
1

b
d− 1

p

)
|y1 − y2|

1
q .

In the final two inequalities we used (ab)−1/2 ≤ (1/2)(a−1 + b−1) followed by (c + d)r ≤
2r−1(cr + dr) for any c, d, r > 0.

It follows that

‖A‖L1
x(U) ≤ Cδ

1
q

2∑
j=1

∥∥∥(Xj(x)− z)−(d−
1
p
)
∥∥∥
L1
x(U)

= Cδ
1
q

2∑
j=1

∫
Rd

|det∇X−1j (w)|

|w − z|d−
1
p

dw

≤ Cδ
1
q max
j=1,2
{‖det∇X−1j ‖L∞}

2∑
j=1

∥∥∥∥∥ 1

|w − z|d−
1
p

∥∥∥∥∥
L1
w(Xj(U))

.



32 ELAINE COZZI, GUNG-MIN GIE, JAMES P. KELLIHER

But, as in the proof of Proposition 3.2 of [1], the above norm is maximized when U is a ball
centered at z (of radius R, depending on the measure of U). This gives

‖A‖L1
x(U) ≤ Cδ

1
q max
j=1,2
{‖det∇X−1j ‖L∞}

2∑
j=1

∫ R

0

rd−1

r
d− 1

p

dr = Cδ
1− 1

p max
j=1,2
{‖ det∇X−1j ‖L∞}pR

1
p

≤ Cδ1−
1
p pmax{1, R}max

j=1,2
{‖det∇X−1j ‖L∞}.

This is minimized, relative to p, when p = − log δ, giving

‖A‖L1
x(U) ≤ C max{1, R}e(−δ log δ),

which is (5.27). �

6. Total mass and infinite energy

In dimensions three and higher, ρν ∈ L1(Rd) ∩ L∞(Rd) is enough to guarantee vν ∈ L2(Rd).
In 2D, however, this is no longer true: the 2D velocity for any ν ≥ 0 will generically have
infinite energy even if it has finite energy at time zero (see, for example, Proposition 3.1.1
of [7]). When dealing only with existence of solutions to (GAGν) the infinite energy of 2D
velocities is a minor issue. We will need to face this issue directly, however, in Section 7 when
we take the vanishing viscosity limit.

For f ∈ L1(Rd) define the total mass of f by

m(f) :=

∫
Rd
f. (6.1)

The total mass of the viscous solutions evolves over time as described in Theorem 6.1.

Theorem 6.1. Assume that ρ0 ∈ L2
N ∩L∞ for some N > 1 + d/2. Let ρν be a weak solution

to (GAGν) as in Definition 4.1 for some ν ≥ 0 given by Theorem 4.5 or Theorem 5.7. Then
up to the time of existence,

m(ρν) = m(ρ0) + (σ1 + σ2)

∫ t

0
‖ρν(s)‖2 ds. (6.2)

Proof. Apply the test function, ϕ = aR(x) for R > 0 in (4.2). This gives for any t ∈ [0, T ]∫ t

0

∫
Rd

(
ρνvν · ∇aR + (σ1 + σ2)(ρ

ν)2aR − ν∇ρν · ∇aR
)
dx dt =

∫
Rd
ρ(t)aR −

∫
Rd
ρ0aR.

Taking R → ∞ and using that ρν lies in L∞(0, T ;Lq) for all q ∈ [1,∞], ∇ρν ∈ L2(0, T ;L2),
and vν ∈ L∞((0, T )× Rd) yields (6.2). �

Remark 6.2. When σ1 + σ2 = 0, as happens for (AGν), (6.2) shows that total mass is
conserved.

In recovering the velocity from its divergence the total mass of the density plays an im-
portant, if so far hidden, role in 2D: in short, if the total mass of the density is zero and has
sufficient spatial decay, then the velocity will lie in L2. We prove this along with other useful
bounds on the velocity in Lemma 6.3.

Lemma 6.3. Let ρ ∈ L1 ∩ L∞(Rd). If d ≥ 3 then for all p ∈ (d/(d− 2),∞],

‖Φ ∗ ρ‖Lp ≤ C(p) ‖ρ‖L1∩Lp , ‖∇Φ ∗ ρ‖ ≤ C ‖ρ‖
1
2

L1∩L∞ ‖ρ‖
1
2

L1 . (6.3)
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Let d = 2 and assume that ρ ∈ L2
N for some N > 1 + d/2 with m(ρ) = 0. Then

‖∇Φ ∗ ρ‖ ≤ C ‖ρ‖L2
N∩L∞

. (6.4)

Proof. Let a be as in Definition 1.1. For d ≥ 3,

‖Φ ∗ ρ‖Lp ≤ ‖aΦ‖L1 ‖ρ‖Lp + ‖(1− a)Φ‖Lp ‖ρ‖L1 <∞

for all p > d/(d− 2). In particular, ‖Φ ∗ ρ‖L∞ ≤ C ‖ρ‖L1∩L∞ . Hence, for d ≥ 3 we can apply
Lemma 6.4. This gives

‖∇Φ ∗ ρ‖2 = −
∫
Rd

(Φ ∗ ρ)(∆Φ ∗ ρ) ≤ ‖Φ ∗ ρ‖L∞ ‖∆Φ ∗ ρ‖L1 = ‖Φ ∗ ρ‖L∞ ‖ρ‖L1

and leads to (6.3).
Now assume that d = 2 with ρ ∈ L2

N and m(ρ) = 0, and assume that N > 1 + d/2. Fix
x ∈ R2 with |x| ≥ 4 and let R = |x|/4.

By (1) of Lemma 2.2 and because m(ρ) = 0 we have∣∣∣∫
R2

aRρ
∣∣∣ =

∣∣∣∫
R2

(1− aR)ρ
∣∣∣ ≤ C ‖ρ‖L2

N
R−(N−1).

Letting

αR :=

∫
R2 aRρ∫
R2 aR

=
C

R2

∫
R2

aRρ

we can write

|∇Φ ∗ ρ(x)| ≤ |∇Φ ∗ (aR(ρ− αR))(x)|+ |∇Φ ∗ (aRαR)(x)|+ |∇Φ ∗ ((1− aR)ρ)(x)|. (6.5)

Because aR(ρ− αR) has total mass zero we have

|∇Φ ∗ (aR(ρ− αR))(x)| = 1

2π

∫
supp aR

x− y
|x− y|2

aR(y)(ρ(y)− αR) dy

=
1

2π

∫
supp aR

[
x− y
|x− y|2

− x

|x|2

]
aR(y)(ρ(y)− αR) dy

≤ 1

2π

∫
supp aR

|y|
|x||x− y|

aR(y)|ρ(y)− αR| dy.

In the last inequality we used Lemma 5.10.
Since |x| = 4R we have |x− y| ≥ (1/2)|x| for all y ∈ supp aR. Hence in the final integrand

above we have both |y|(|x||x−y|)−1 ≤ C|y||x|−2 and |y|(|x||x−y|)−1 ≤ CR|x|−2. We conclude
that

|∇Φ ∗ (aR(ρ− αR))(x)| ≤ C
∫
supp aR

|y|
|x|2

aR(y)|ρ(y)| dy + C

∫
supp aR

R

|x|2
aR(y)|αR| dy

≤ C

|x|2
(
‖|y|ρ(y)‖L1

y
+ |αR|R3

)
≤ C

|x|2
‖ρ‖L2

N
+ C|αR|R,

since ‖|y|ρ(y)‖L1
y
≤ C ‖ρ‖L2

N
by Corollary 2.5 and N > 1 + d/2.

It also follows from |x| = 4R that

‖∇Φ(x− ·)‖L∞(supp aR)
= sup

y∈supp aR

1

2π

∣∣∣∣ x− y|x− y|2

∣∣∣∣ ≤ C

|x|
.
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Thus

|∇Φ ∗ (aRαR)(x)| ≤ ‖∇Φ(x− ·)‖L∞(supp aR)
‖aRαR‖L1 ≤

C

|x|
|αR|R2 = C|αR|R.

For the final term in (6.5) we use (2.1) to give

|∇Φ ∗ ((1− aR)ρ)(x)| ≤ ‖∇Φ‖L∞(supp(1−aR)(x−·)) ‖((1− aR)ρ)‖L1 ≤
C

R
‖ρ‖L2

N
R−(N−1)

= C ‖ρ‖L2
N
|x|−N ≤ C ‖ρ‖L2

N
|x|−2

since N > 1 + d/2 = 2. Collecting these bounds we conclude that for |x| ≥ 4,

|∇Φ ∗ ρ(x)| ≤ C

|x|2
(
‖ρ‖L2

N∩L∞
+ |αR||x|

)
.

Note that these bounds were all for a fixed x with |x| ≥ 4 and so for fixed R ≥ 1. It remains
to bound αR, though. We do this using again that the total mass of ρ is zero so

|αR| =
C

R2

∣∣∣∫
R2

(1− aR)ρ
∣∣∣ ≤ C

R2
‖(1− aR)ρ‖L1 ≤ CR−N−1 ‖ρ‖L2

N
≤ C ‖ρ‖L2

N
|x|−3

by virtue of (2.1) and because N + 1 > 1 + d/2 + 1 > 3. Applying (2.2) for the case |x| < 4
it follows that

|∇Φ ∗ ρ(x)| ≤ C

1 + |x|2
(
‖ρ‖L2

N∩L∞
+ ‖ρ‖L2

N
|x|−2

)
≤ C

1 + |x|2
‖ρ‖L2

N∩L∞
.

Hence, ∇Φ ∗ ρ ∈ Lp(R2) for all p ∈ (1,∞], and in particular (6.4) holds. �

We used the following technical lemma in the proof of Lemma 6.3 above and will use it
again in Section 8.

Lemma 6.4. Let ϕ ∈ Lp1 ∩ L∞(Rd) with ∇ϕ ∈ Lp2 ∩ L∞(Rd) and ∆ϕ ∈ L1 ∩ L∞(Rd). If
1/p1 + 1/p2 ≥ (d− 1)/d then ∇ϕ ∈ L2(Rd). If 1/p1 + 1/p2 > (d− 1)/d then

‖∇ϕ‖2 = −
∫
Rd
ϕ∆ϕ. (6.6)

Proof. Let aR be as in Definition 1.1. Assume first that ϕ is also in C∞(Rd). Then∫
Rd
|∇ϕ|2 = lim

R→∞

∫
Rd
aR∇ϕ · ∇ϕ = − lim

R→∞

∫
Rd

div(aR∇ϕ)ϕ

= − lim
R→∞

∫
Rd
aR∆ϕϕ− lim

R→∞

∫
Rd

(∇aR · ∇ϕ)ϕ

= −
∫
Rd

∆ϕϕ− lim
R→∞

∫
Rd

(∇aR · ∇ϕ)ϕ.

For the first equality, the properties of a allow us to apply the monotone convergence theorem
(we may obtain ∞, though). The one limit we evaluated is valid because aR∆ϕ → ∆ϕ in
L1(Rd). For the remaining limit define p so that 1 = 1

p + 1
p1

+ 1
p2

. Then 1 ≥ 1
p + d−1

d so p ≥ d.

Applying Hölder’s inequality gives∣∣∣∣∫
Rd

(∇aR · ∇ϕ)ϕ

∣∣∣∣ ≤ ‖∇aR‖L∞ ‖1‖Lp(supp aR) ‖∇ϕ‖Lp2 ‖ϕ‖Lp1 ≤ C

R
R
d
p = CR

d
p
−1
.

We conclude that the remaining limit vanishes from which (6.6) follows. �
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To treat densities in R2 having nonzero total mass, as we will need to do in Section 8, we
will subtract from the associated velocity field a radially symmetric velocity field, τ 0. We do
this in analogy with the definition of the stationary solution to the Euler equations used to
obtain the radial-energy decomposition of a 2D velocity field in [7, 19].

Definition 6.5. Fix a radially symmetric function g0 ∈ C∞c (R2) having total mass 1. We
will abuse notation by writing both g0(x) and g0(r), where x ∈ R2 and r = |x|. Define

τ 0(x) = f(r)x, f(r) :=
1

r2

∫ r

0
ηg0(η) dη.

Being a radially directed vector field, τ 0 is a gradient. We see that

div τ 0 = 2f + xi∂if = 2f + xi
xi

r
∂rf = 2f + r∂rf

= 2f − 2r
1

r3

∫ r

0
ηg(η) dη + r

rg0(r)

r2
= 2f − 2f + g0(r) = g0(r).

Hence also τ 0 = ∇Φ ∗ g0.

7. The vanishing viscosity limit for (GAGν) for velocities in L2

In this section we consider the vanishing viscosity limit (V V ) (see Section 1) for any σ1, σ2
when d ≥ 3 and for σ1 + σ2 = 0 when d = 2. In both of these cases, vν − v0 remains in
L2(Rd). In Section 8 we consider the general situation in 2D.

Remark 7.1. We assume throughout this section, Section 8, and Section 9 the following:

(1) The initial density ρ0 lies at least in L2
N ∩ L∞ for some N > 1 + d/2, where d ≥ 2.

(2) ρ0 is the unique weak inviscid solution to (GAG0) given by Theorem 5.7.
(3) ρν , ν > 0, is any choice of weak solution to (GAGν) given by Theorem 4.5. (We will

see in Theorem 7.5 that there is a unique solution for any ν > 0 if also ρ0 ∈ H2(Rd).)
(4) T > 0 is a uniform time of existence for all ν ≥ 0 guaranteed by Theorems 4.5 and 5.7.

Proposition 7.2. Assume that ρ0 ∈ L2
N ∩ L∞ and let µ = ρν − ρ0. For all t ∈ [0, T ],

m(µ(t)) = (σ1 + σ2)

∫ t

0
〈µ(s), ρ0(s) + ρν(s)〉 ds,

|m(µ(t))| ≤ |σ1 + σ2|
∫ t

0

(∥∥ρ0(s)∥∥+ ‖ρν(s)‖
)
‖µ(s)‖ ds.

Proof. This follows from Theorem 6.1. �

The total mass of ρν − ρ0 is zero at time zero, but there is no reason to expect, based
upon Proposition 7.2, that m(µ(t)) remains zero. Proposition 7.2 does show, however, that
as ν → 0, m(µ) vanishes if ‖µ‖ vanishes. This will be very useful to us in Section 8.

Theorem 7.3. Assume that ρ0 ∈ C1,α(Rd) for some α > 0 is compactly supported. When
d = 2 assume that σ1 + σ2 = 0. For all ν ≤ 1 and t ∈ [0, T ],∥∥(vν − v0)(t)

∥∥2
H1 +

∥∥(ρν − ρ0)(t)
∥∥2 + ν

∫ t

0

∥∥(ρν − ρ0)(s)
∥∥2 ds ≤ C0(t)tνe

C0(t).

Proof. Define

µ = ρν − ρ0, w = vν − v0, η = ρ0 + ρν . (7.1)
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Then div w = σ1µ and w ∈ L2(Rd) for all t ∈ [0, T ] by Lemma 6.3 (for d = 2 this uses
m(µ) = 0 by Proposition 7.2).

Taking (GAGν)− (GAG0) in the equivalent weak form given in (4) of Theorem 4.2 gives
for any t ∈ [0, T ]∫ t

0
(µ, ∂tϕ) +

∫ t

0

∫
Rd

(
ρ0w · ∇ϕ+ µvν · ∇ϕ+ (σ1 + σ2)µηϕ− ν∇ρν · ∇ϕ

)
=

∫
Rd
µ(t)ϕ(t)

(7.2)

for any ϕ ∈ Y . Choosing ϕ = µ ∈ Y we write (7.2) as

‖µ(t)‖2−
∫ t

0
(∂tµ, µ) =

∫ t

0
〈ρ0w,∇µ〉+ 〈µvν ,∇µ〉+ (σ1 + σ2)〈µη, µ〉 − ν〈∇ρν ,∇µ〉. (7.3)

Employing Lemma 1.2 of Section III.1.4 of [24] (or Lemma 3.9) we have∫ t

0
(∂tµ, µ) =

1

2

∫ t

0
∂t(µ, µ) =

1

2
‖µ(t)‖2 − 1

2
‖µ(0)‖2 =

1

2
‖µ(t)‖2 .

For the other terms,

〈ρ0w,∇µ〉 = −〈div(ρ0w), µ〉 = −〈ρ0 div w + w · ∇ρ0, µ〉

= −σ1〈ρ0, µ2〉 − 〈w · ∇ρ0, µ〉 ≤ C0(t) ‖µ‖2 − 〈w · ∇ρ0, µ〉,

〈µvν ,∇µ〉 =
1

2
〈vν ,∇µ2〉 = −1

2
〈div vν , µ2〉 = −σ1

2
〈ρν , µ2〉 ≤ σ1

2
‖ρν‖L∞ ‖µ‖

2

≤ C0(t) ‖µ‖2 ,

(σ1 + σ2)〈µη, µ〉 ≤ |σ1 + σ2|
∥∥ρ0 + ρν

∥∥
L∞
‖µ‖2 ≤ C0(t) ‖µ‖2 ,

−ν〈∇ρν ,∇µ〉 = −ν〈∇µ,∇µ〉 − ν〈∇ρ0,∇µ〉

≤ −ν〈∇µ,∇µ〉+
ν

2

∥∥∇ρ0∥∥2 +
ν

2
‖∇µ‖2 ≤ C0(t)ν −

ν

2
‖∇µ‖2 .

To estimate the term −〈w ·∇ρ0, µ〉 we consider the cases d = 2 and d ≥ 3 separately. Note
that ‖w‖

L
2d
d−2
≤ C‖µ‖ when d ≥ 3 by the Hardy-Littlewood-Sobolev inequality. Therefore,

− 〈w · ∇ρ0, µ〉 ≤ ‖w · ∇ρ0‖‖µ‖ ≤ ‖w‖
L

2d
d−2
‖∇ρ0‖Ld‖µ‖

≤ C‖µ‖‖∇ρ0‖Ld‖µ‖ = C‖µ‖2‖∇ρ0‖Ld ≤ C0(t) ‖µ‖2

when d ≥ 3. For the case d = 2, the Hardy-Littlewood-Sobolev inequality does not yield the
desired estimate, but we have

− 〈w · ∇ρ0, µ〉 ≤ ‖w · ∇ρ0‖‖µ‖ ≤ ‖w‖Lp‖∇ρ0‖Lq‖µ‖ (7.4)

where 1/p+ 1/q = 1/2. By Lemmas 7.7 and 7.8 we have

‖w‖Lp ≤ C (‖w‖+ ‖µ‖) . (7.5)

Substituting this estimate into (7.4) gives, for any fixed q ∈ (2,∞),

−〈w ·∇ρ0, µ〉 ≤ ‖w ·∇ρ0‖‖µ‖ ≤ C‖∇ρ0‖Lq(‖w‖+‖µ‖)‖µ‖ ≤ C0(t) (‖w‖+ ‖µ‖) ‖µ‖ . (7.6)

Applying the above estimates to (7.3), we see that for d ≥ 3,

‖µ(t)‖2 + ν

∫ t

0
‖∇µ(s)‖2 ds ≤ C0(t)tν + C0(t)

∫ t

0
‖µ(s)‖2 ds, (7.7)
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while for d = 2,

‖µ(t)‖2 + ν

∫ t

0
‖∇µ(s)‖2 ds ≤ C0(t)tν +

∫ t

0
C0(s)

(
‖w(s)‖2 + ‖µ(s)‖2

)
ds. (7.8)

Applying Lemma 1.2 (Grönwall’s lemma) to (7.7) we conclude that ρν converges to ρ in
L∞(0, T ;L2(Rd)) as ν approaches zero. However, we must obtain a bound on ‖w‖ for both
d = 2 and d ≥ 3 below in order to obtain the estimate in Theorem 7.3 on the difference of
velocities in H1. Therefore, we utilize (7.8) for both d = 2 and d ≥ 3 in what follows.

We return to (7.2), but use (3) of Theorem 4.2 instead of (4) for an as-yet unspecified
ϕ ∈ C([0, T ];L2) ∩ L2(0, T ;H1). In place of (7.2), then, we obtain∫ t

0
σ−11 〈∂tw,∇ϕ〉+ 〈ρ0,w · ∇ϕ〉+ 〈µ,vν · ∇ϕ〉+ (σ1 + σ2)〈µη, ϕ〉

− ν〈∇ρν ,∇ϕ〉 = 0.

(7.9)

Here we used

−(∂tµ, ψ) = −σ−11 (∂t div w, ψ) = σ−11 (∂tw,∇ψ) (7.10)

for a.e t ∈ [0, T ] for all ψ ∈ C∞c (Rd) and hence by density for ϕ in place of ψ.

Because µη belongs to all Lp spaces, the equality in (7.9) holds for all ϕ ∈ L2(0, T ; Ḣ1∩Lp)
for any p ∈ [1,∞], any element of such a space being approximable by a sequence in Y . When

σ1 + σ2 = 0 only ∇ϕ appears in (7.9), so equality holds for all ϕ ∈ L2(0, T ; Ḣ1). Setting

ϕ = σ1Φ∗µ we note that for d ≥ 2 we have ψ ∈ L2(0, T ; Ḣ1) by Theorem 4.5 and Lemma 6.3.
For d ≥ 3 we have ψ ∈ L∞(0, T ;Lp) for any fixed p > d/(d − 1). Hence (7.9) holds for
ϕ = σ1Φ ∗ µ for both cases covered by this theorem.

Then ∇ϕ = w and (7.9) becomes∫ t

0
σ−11 〈∂tw,w〉+ 〈ρ0, |w|2〉+ 〈µ,vν ·w〉+ σ1(σ1 + σ2)〈µη,Φ ∗ µ〉 − ν〈∇ρν ,w〉 = 0. (7.11)

Again using Lemma 1.2 of Section III.1.4 of [24] (or Lemma 3.9) we have∫ t

0
〈∂tw,w〉 =

1

2

∫ t

0
∂t〈w,w〉 =

1

2
‖w(t)‖2 − 1

2
‖w(0)‖2 =

1

2
‖w(t)‖2 ,

and we have the estimates

|〈ρ0, |w|2〉| ≤
∥∥ρ0∥∥

L∞
‖w‖2 ≤ C0(t) ‖w‖2 ,

|〈µ,vν ·w〉| ≤ ‖vν‖L∞ ‖w‖ ‖µ‖ ≤ C0(t) ‖w‖2 + C0(t) ‖µ‖2 ,

ν|〈∇ρν ,w〉| = ν|〈∇µ,w〉+ 〈∇ρ0,w〉| ≤ ν|σ−11 |
4
‖∇µ‖2 +

2ν + |σ−11 |
2|σ−11 |

‖w‖2 +
ν2

2

∥∥∇ρ0∥∥2
≤ ν|σ−11 |

4
‖∇µ‖2 +

2ν + |σ−11 |
2|σ−11 |

‖w‖2 + C0(t)ν
2.

Now consider 〈µη,Φ ∗ µ〉 = σ1〈µη,div(Φ ∗w)〉 for d ≥ 3. Write

|〈µη,div(Φ ∗w)|〉 ≤ ‖µη‖
L

2d
d+2
‖∇Φ ∗w‖

L
2d
d−2

≤ ‖µ‖L2‖η‖Ld‖∇Φ ∗w‖
L

2d
d−2
≤ C0(t)‖µ‖L2‖w‖L2 ,

where we applied the Hardy-Littlewood-Sobolev inequality. The term σ1(σ1 + σ2)〈µη,Φ ∗ µ〉
disappears entirely when σ1 + σ2 = 0.
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Substituting these bounds into (7.11) gives for all ν ≤ 1

‖w(t)‖2 ≤ ν

2

∫ t

0
‖∇µ(s)‖2 ds+ C0(t)tν +

∫ t

0
C0(s)

(
‖w(s)‖2 + ‖µ(s)‖2

)
ds.

Adding this inequality to that in (7.8) gives for all ν ≤ 1

‖w(t)‖2 + ‖µ(t)‖2 +
ν

2

∫ t

0
‖∇µ(s)‖2 ds ≤ C0(t)tν +

∫ t

0
C0(s)

(
‖w(s)‖2 + ‖µ(s)‖2

)
ds.

Applying Lemma 1.2 (Grönwall’s lemma) we conclude that

‖w(t)‖2 + ‖µ(t)‖2 + ν

∫ t

0
‖∇µ(s)‖2 ds ≤ C0(t)tνe

C0(t)

for all ν ≤ 1. The proof is completed by observing that ‖w(t)‖H1 ≤ ‖w(t)‖ + C ‖µ(t)‖ by
Lemma 7.8. �

Remark 7.4. An examination of the proof of Theorem 7.3 shows that the conclusion holds as
long as the solutions satisfy: (a) ρν , ρ0 ∈ L∞(0, T ;L1∩L∞(Rd)) and (b) ∇ρ0 ∈ L∞(0, T ;L2∩
Ld(Rd)) when d ≥ 3 or ∇ρ0 ∈ L∞(0, T ;L2 ∩ Lq(Rd)) for some q > 2 when d = 2. Our
assumptions on the initial data imply that these conditions hold, though they are not minimal.

Similar considerations yield the uniqueness result for solutions to the viscous equations in
Theorem 7.5. Thus in Theorem 7.3 and later in Theorem 8.1, ρν can refer to the unique
solution for the given value of ν.

Theorem 7.5. Fix ν > 0 and let d ≥ 2. (1) Weak solutions to (GAGν) as in Definition 4.1
are unique within the class of solutions for which (a) ρν ∈ L∞(0, T ;L1 ∩ L∞(Rd)) and (b)
∇ρν ∈ L∞(0, T ;L2 ∩ Ld(Rd)) when d ≥ 3 or ∇ρν ∈ L∞(0, T ;L2 ∩ Lq(Rd)) for some q > 2
when d = 2. (2) Let N > 1 + d/2 and k ≥ max{2, d/2} be an integer. If ρ0 ∈ Hk

N then there

exists a unique weak solution to (GAGν) lying in Y k
N .

Proof. (1) If instead of subtracting an inviscid from a viscous solution we had subtracted two
solutions having the same viscosity then the proof of Theorem 7.3 would yield the uniqueness
of solutions to (GAGν) for ν ≥ 0 in the class of solutions having the regularity of ρ0 stated
in Remark 7.4. This covers the cases d ≥ 3 and d = 2 with σ1 + σ2 = 0. The case d = 2 with
σ1 + σ2 6= 0 will be treated in Theorem 8.1.

(2) If ρ0 ∈ Hk
N then ρν ∈ Y k

N ⊆ C([0, T ];Hk) by Theorem 4.5. Then by the Galgliardo-
Nirenberg-Sobolev inequality,

‖∇ρν‖L2k ≤ C‖Dkρν‖
1
k ‖ρν‖1−

1
k

L∞ .

This shows that ρν has enough regularity to obtain uniqueness. �

Remark 7.6. Since only one of the two weak solutions in the proof of Theorem 7.5 needs to
have the required additional regularity over that of a weak solution, it also follows that a weak
solution having the additional initial regularity given in Theorem 7.5 is a strong solution.

We used the following two lemmas above.

Lemma 7.7. Fix p0 ∈ (2,∞). There exists C = C(p0) such that for any p ∈ [p0,∞]

‖u‖Lp ≤ C (‖u‖+ ‖∇u‖)

for any vector field u having components in H1(R2).
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Proof. Let u be a vector field having components in H1(R2). By the Gagliardo-Nirenberg-
Sobolev inequality we have for any p ∈ (2,∞)

‖u‖Lp ≤ C ‖u‖
2
p ‖∇u‖1−

2
p .

But Young’s inequality in the form,

ArB1−r ≤ rA+ (1− r)B

with

r =
2

p
, A =

p

2
‖u‖ , B =

(
2

p

) 2
p−2

‖∇u‖

so that ArB1−r = ‖u‖
2
p ‖∇u‖1−

2
p gives

‖u‖Lp ≤ C ‖u‖+ C
p− 2

p

(
2

p

) 2
2−p
‖∇u‖ ≤ C (‖u‖+ ‖∇u‖) .

The inequality also holds for p =∞ by the continuity of Lp norms. �

Lemma 7.8. Assume that u = ∇Φ ∗ ρ ∈ L2(Rd) with ρ ∈ L2(Rd). Then ‖∇u‖ ≤ C ‖ρ‖.

Proof. We have ∇u = Rρ where R = ∇∇∆−1. But each component Rij is a Calderon-
Zygmund operator, which is bounded in L2. Hence, ‖∇u‖ ≤ C ‖ρ‖. (In fact, knowing that
∇u ∈ L2 one can justify an integration by parts to obtain ‖∇u‖ = ‖∇∇Φ ∗ ρ‖ = ‖∆Φ ∗ ρ‖ =
‖ρ‖, but we will not need this.) �

8. The vanishing viscosity limit for (GAGν) for velocities not in L2

In this section, we consider the vanishing viscosity limit (V V )′ (see Section 1) in the general
2D case. Throughout this section we make the assumptions in Remark 7.1.

Theorem 8.1. Assume that d = 2 and ρ0 ∈ C1,α(R2) for some α > 0 is compactly supported.
Define µ, w as in (7.1), and let

µ̃ := µ−m(µ)g0, w̃ := w − θν , θν := σ1m(µ)τ 0. (8.1)

(For τ0, g0 see Definition 6.5; for the definition of m see(6.1).) Then for all t ∈ [0, T ], ν ≤ 1,

‖w̃(t)‖2H1 + ‖µ(t)‖2 + ν

∫ t

0
‖∇µ‖2 ≤ C0(t)νte

C0(t)t. (8.2)

Moreover, for all k ≥ 0,

‖w(t)− w̃(t)‖Ck = ‖θν(t)‖Ck ≤ Ckν
1
2 t

3
2 eC0(t)t. (8.3)

Proof. We have div w̃ = σ1µ̃ and w̃ ∈ L2(Rd) for all t ∈ [0, T ] by Lemma 6.3, since m(µ̃) = 0.
We start off the same way as in the proof of Theorem 7.3. This leads to (7.3) and all

the estimates following it that led to (7.7) and (7.8). We estimate the one term 〈w · ∇ρ0, µ〉
differently, however. First note that

|〈w · ∇ρ0, µ〉| ≤ |〈w̃ · ∇ρ0, µ〉|+ |〈(σ1m(µ)τ 0) · ∇ρ0, µ〉|. (8.4)

Following the proof of Theorem 7.3, we have

|〈w̃ · ∇ρ0, µ〉| ≤ ‖w̃ · ∇ρ0‖‖µ‖ ≤ ‖w̃‖Lp‖∇ρ0‖Lq‖µ‖ (8.5)
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where 1/p + 1/q = 1/2. Let p ∈ (2,∞) and observe that q = 2p/(p − 2) ∈ (2,∞) as well.
From Lemmas 7.7 and 7.8 we have

‖w̃‖Lp ≤ C (‖w̃‖+ ‖µ̃‖)
since w̃ = ∇Φ ∗ µ̃. Substituting this estimate into (8.5) gives, for any fixed q ∈ (2,∞),

|〈w̃ · ∇ρ0, µ〉| ≤ C‖∇ρ0‖Lq(‖w̃‖+ ‖µ̃‖)‖µ‖ ≤ C0(t) (‖w̃‖+ ‖µ̃‖) ‖µ‖ .
Now, by the definition of µ̃ and Propostion 7.2,

‖µ̃(t)‖ ≤ ‖µ(t)‖+ |m(µ(t))| ‖g0‖ ≤ ‖µ(t)‖+ ‖g0‖ |σ1 + σ2|
∫ t

0
‖µ(s)‖

∥∥ρν(s) + ρ0(s)
∥∥ ds

≤ ‖µ(t)‖+ C0(t)

∫ t

0
‖µ(s)‖ ds,

so that

|〈w̃ · ∇ρ0, µ〉| ≤ C0(t)‖w̃‖‖µ‖+ C0(t)‖µ‖2 + C0(t)‖µ‖
∫ t

0
‖µ(s)‖ ds

≤ C0(t)‖w̃‖2 + C0(t)‖µ‖2 +

(∫ t

0
‖µ(s)‖ ds

)2

≤ C0(t)‖w̃‖2 + C0(t)‖µ‖2 + C0(t)t

∫ t

0
‖µ(s)‖2 ds,

(8.6)

where we used Jensen’s inequality (or Cauchy-Schwartz) in the last step. To estimate
|((σ1m(µ)τ 0) · ∇ρ0, µ)|, we observe that, by Proposition 7.2,

|m(µ(t))| ≤ |σ1 + σ2|
∫ t

0

(
‖ρν(s)‖+

∥∥ρ0(s)∥∥) ‖µ(s)‖ ds ≤ C0(t)

∫ t

0
‖µ(s)‖ ds (8.7)

so that

|〈(σ1m(µ)τ 0) · ∇ρ0, µ〉| ≤ |σ1|
∥∥∇ρ0∥∥ ‖τ 0‖L∞ |m(µ)| ‖µ‖

≤ 1

2
σ21
∥∥∇ρ0∥∥2 ‖τ 0‖2L∞m(µ)2 +

1

2
‖µ‖2 ≤ C0(t)

(∫ t

0
‖µ(s)‖ ds

)2

+
1

2
‖µ‖2

≤ C0(t)t

∫ t

0
‖µ(s)‖2 ds+

1

2
‖µ‖2 ,

(8.8)

where we again used Jensen’s inequality (or Cauchy-Schwartz) as well as Proposition 7.2.
Hence, applying (8.6) and (8.8) to (8.4) we see that

|〈w · ∇ρ0, µ〉| ≤ C0(t) ‖w̃‖2 + C0(t) ‖µ‖2 + C0(t)t

∫ t

0
‖µ(s)‖2 ds.

Now, |〈w ·∇ρ0, µ〉| (as part of 〈ρ0w,∇µ〉) appears in (7.3) integrated over time. Hence we
need to remove the double time integral that would appear if we simply integrated the above
estimate over time. We can do so by noting that∫ t

0
C0(y)y

∫ y

0
‖µ(s)‖2 ds dy ≤ C0(t)t

∫ t

0

∫ t

0
‖µ(s)‖2 ds dy ≤ C0(t)t

2

∫ t

0
‖µ(s)‖2 ds. (8.9)

Thus we see that in place of (7.8) we have

‖µ(t)‖2 + ν

∫ t

0
‖∇µ(s)‖2 ds ≤ C0(t)tν +

∫ t

0
C0(s)

(
‖w̃(s)‖2 + ‖µ(s)‖2

)
ds. (8.10)
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To bound ‖w̃‖, we derive the equivalent of (7.9) for w̃ for an arbitrary ϕ ∈ L2(0, T ;H1).
The only change we need make is in (7.10), which, using div w = div w̃ +σ1m(µ)g0, becomes

−(∂tµ, ϕ) = −σ−11 (∂t div w, ϕ) = −σ−11 (∂t div w̃, ϕ)−m′(µ)(g0, ϕ)

= σ−11 〈∂tw̃,∇ϕ〉 − (σ1 + σ2)m(µη)〈g0, ϕ〉

with η as in (7.1) and using Proposition 7.2 to give m′(ν) = (σ1+σ2)〈µ, η〉 = (σ1+σ2)m(µη).
Thus, (7.9) becomes∫ t

0
σ−11 〈∂tw̃,∇ϕ〉 − (σ1 + σ2)m(µη)〈g0, ϕ〉+ 〈ρ0,w · ∇ϕ〉+ 〈µ,vν · ∇ϕ〉

+ (σ1 + σ2)〈µη, ϕ〉 − ν〈∇ρν ,∇ϕ〉 = 0.

(8.11)

Now set ϕ = σ1Φ ∗ µ̃ = σ1Φ ∗ (µ−m(µ)g0) and fix p0 ∈ (2,∞]. Then ∇ϕ ∈ L∞(0, T ;L2)
with ϕ ∈ L∞(0, T ;Lp0) by Lemma 6.3. Also, µη ∈ L∞(0, T ;Lq0), where q0 is Hölder conjugate
to p0 because both µ and η lie in L∞(0, T ;Lp) for all p ∈ [1,∞]. Hence, (8.11) holds for ϕ by
a simple density argument. Using ∇ϕ = w̃ and 〈µη, ϕ〉 −m(µη)〈g0, ϕ〉 = 〈µη −m(µη)g0, ϕ〉,
(8.11) becomes∫ t

0
σ−11 〈∂tw̃, w̃〉+ 〈ρ0,w · w̃〉+ 〈µ,vν · w̃〉+ σ1(σ1 + σ2)〈µη −m(µη)g0,Φ ∗ µ̃〉

− ν〈∇ρν , w̃〉 = 0.

(8.12)

Now,

|〈ρ0, w̃ ·w〉| ≤
∥∥ρ0∥∥

L∞
‖w̃‖2 + |σ1||m(µ)||〈τ 0 · w̃, ρ0〉| ≤ C0(t) ‖w̃‖2 + C0(t)|m(µ)|2,

|〈µ,vν · w̃〉| ≤ ‖vν‖L∞ ‖w̃‖ ‖µ‖ ≤ C0(t) ‖w̃‖2 + C0(t) ‖µ‖2 ,

ν|〈∇ρν , w̃〉| = ν|〈∇µ, w̃〉+ 〈∇ρ0, w̃〉| ≤ ν|σ−11 |
4
‖∇µ‖2 +

2ν + |σ−11 |
2|σ−11 |

‖w̃‖2 +
ν2

2

∥∥∇ρ0∥∥2
≤ ν|σ−11 |

4
‖∇µ‖2 +

2ν + |σ−11 |
2|σ−11 |

‖w̃‖2 + C0(t)ν
2.

Substituting these bounds into (8.12), using (8.7) with Jensen’s inequality, and applying
Lemma 8.2 we obtain for all ν ≤ 1

‖w̃(t)‖2 ≤
∫ t

0

ν

2
‖∇µ(s)‖2 ds+ C0(t)tν +

∫ t

0
C0(s)

(
‖w̃(s)‖2 + ‖µ(s)‖2

)
ds.

Adding this inequality to that in (8.10) gives for all ν ≤ 1

‖w̃(t)‖2 + ‖µ(t)‖2 +
ν

2

∫ t

0
‖∇µ(s)‖2 ds ≤ C0(t)tν +

∫ t

0
C0(s)

(
‖w̃(s)‖2 + ‖µ(s)‖2

)
ds.

Applying Lemma 1.2 (Grönwall’s lemma), we conclude that

‖w̃(t)‖2 + ‖µ(t)‖2 + ν

∫ t

0
‖∇µ(s)‖2 ds ≤ C0(t)tνe

C0(t) (8.13)



42 ELAINE COZZI, GUNG-MIN GIE, JAMES P. KELLIHER

for all ν ≤ 1. Also, by Lemma 6.3 and Proposition 7.2,

‖w̃(t)‖H1 ≤ ‖w̃(t)‖+ C ‖µ̃(t)‖ ≤ ‖w̃(t)‖+ ‖µ(t)‖+ |m(µ(t))| ‖g0‖

≤ ‖w̃(t)‖+ ‖µ(t)‖+ ‖g0‖ |σ1 + σ2|
∫ t

0
‖µ(s)‖ ‖η(s)‖ ds

≤ ‖w̃(t)‖+ ‖µ(t)‖+ C0(t)

∫ t

0
‖µ(s)‖ ds

≤ ‖w̃(t)‖+ C0(t)(tν)
1
2 eC0(t) + C0(t)

∫ t

0
C0(s)s

1
2 ν

1
2 eC0(s) ds

≤ ‖w̃(t)‖+ C0(t)t
1
2 eC0(t)ν

1
2 .

In the second-to-last inequality, we used (8.13). Combining this bound with (8.13) completes
the proof of (8.2).

To prove (8.3), we simply observe that

‖w(t)− w̃(t)‖L∞ = ‖σ1m(µ)τ 0‖L∞ ≤ |σ1||m(µ)| ‖τ 0‖L∞ ≤ C|m(µ)|

≤ C0(t)

∫ t

0
‖µ(s)‖ ‖η(s)‖ ds ≤ Cν

1
2 t

3
2 eC0(t)t,

where we used Proposition 7.2 and (8.2). A similar bound holds for all spatial derivatives of
w(t)− w̃(t), yielding (8.3). �

We used the following lemma in the proof of Theorem 8.1, above.

Lemma 8.2. Define µ, η, µ̃, w̃ as in (7.1) and (8.1). When d = 2, we have,

|〈µη −m(µη)g0,Φ ∗ µ̃〉| ≤ C0(t) ‖w̃‖ ‖µ‖ .

Proof. First observe that γ := µη − m(µη)g0 lies in L2
N (R2) because µ and η both lie in

L2
N (R2) ∩ L∞(R2). Also observe that γ has total mass zero. Thus ∇Φ ∗ γ ∈ L2(R2) by

Lemma 6.3. Similarly, µ̃ ∈ L2
N with total mass zero and ∇Φ ∗ µ̃ = w̃ ∈ L2(R2). This allows

us to integrate by parts, using γ = div(∇Φ ∗ γ)), to conclude that

|〈γ,Φ ∗ µ̃〉| = |〈∇Φ ∗ γ, w̃〉| ≤ ‖∇Φ ∗ γ‖ ‖w̃‖ .

By Lemma 6.4, with a as in Definition 1.1,

‖∇Φ ∗ γ‖2 = −〈Φ ∗ γ, γ〉 = −〈(aΦ) ∗ γ, γ〉 − 〈((1− a)Φ) ∗ γ, γ〉

≤ ‖aΦ‖L1 ‖γ‖2 + |〈((1− a)Φ) ∗ γ, γ〉|

≤ C0(t) ‖µ‖2 + |〈((1− a)Φ) ∗ γ, γ〉|,

(8.14)

since

‖γ‖2 = ‖µη −m(µη)g0‖2 ≤ (‖µ‖ ‖η‖L∞ + |m(µη)| ‖g0‖)2

≤ (‖µ‖ ‖η‖L∞ + ‖µ‖ ‖η‖ ‖g0‖)2 ≤ C0(t) ‖µ‖2 .

It remains to estimate |〈((1− a)Φ) ∗ γ, γ〉|. Define g(x) := 1 + |x|ε and write,

|〈((1− a)Φ) ∗ γ, γ〉| = |〈(1/g) [((1− a)Φ) ∗ γ] , gγ〉|
≤ ‖(1/g) [((1− a)Φ) ∗ γ]‖L∞ ‖gγ‖L1 .
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Since ρ0(t), ρ
ν(t) are in L2

N (R2), Corollary 2.5 allows us to conclude that ‖gη‖ ≤ C0(t).
Therefore,

‖gγ‖L1 = ‖µgη −m(µη)gg0)‖L1 ≤ ‖µ‖ ‖gη‖+ |m(µη)| ‖gg0‖L1

≤ C0(t) ‖µ‖+ ‖µ‖ ‖η‖ ‖gg0‖L1 ≤ C0(t) ‖µ‖ ,
and we conclude that

|〈((1− a)Φ) ∗ γ, γ〉| ≤ C0(t) ‖(1/g) [((1− a)Φ) ∗ γ]‖L∞ ‖µ‖ . (8.15)

We need to extract another factor of ‖µ‖ from ‖(1/g) [((1− a)Φ) ∗ γ]‖L∞ . We have,∣∣∣ 1

g(x)
[((1− a)Φ) ∗ γ] (x)

∣∣∣ =
∣∣∣ 1

2πg(x)

∫
R2

(1− a(x− y)) log|x− y|γ(y) dy
∣∣∣

≤ 1

2πg(x)

∫
R2

(1− a(x− y)) log|x− y|
|x− y|ε

|x− y|ε|γ(y)| dy

≤ 1

2πg(x)

∫
R2

(1− a(x− y)) log|x− y|
|x− y|ε

(|x|+ |y|)ε|γ(y)| dy

≤ 1

2πg(x)

∫
R2

(1− a(x− y)) log|x− y|
|x− y|ε

|x|ε|γ(y)| dy

+
1

2πg(x)

∫
R2

(1− a(x− y)) log|x− y|
|x− y|ε

|y|ε|γ(y)| dy.

So ∥∥∥∥1

g
[((1− a)Φ) ∗ γ]

∥∥∥∥
L∞
≤
∥∥∥∥ |x|ε2πg(x)

∫
R2

(1− a(x− y)) log|x− y|
|x− y|ε

|γ(y)| dy
∥∥∥∥
L∞x

+

∥∥∥∥ 1

2πg(x)

∫
R2

(1− a(x− y)) log|x− y|
|x− y|ε

|y|ε|γ(y)| dy
∥∥∥∥
L∞x

≤ C
∫
R2

|γ(y)| dy + C

∫
R2

|y|ε|γ(y)| dy = C ‖γ‖L1 + C ‖|x|εγ(x)‖L1
x
.

(8.16)

But,

‖γ‖L1 = ‖µη −m(µη)g0‖L1 ≤ ‖µ‖ ‖η‖+ |m(µη)| ‖g0‖L1

≤ C0(t) ‖µ‖+ ‖µ‖ ‖η‖ ‖g0‖L1 ≤ C0(t) ‖µ‖
and

‖|x|εγ(x)‖L1
x

= ‖µ(x)(|x|εη(x))−m(µη)(|x|εg0(x))‖L1
x

≤ ‖µ‖ ‖|x|εη(x)‖L2
x

+ |m(µη)| ‖|x|εg0(x)‖L1
x

≤ C0(t) ‖µ‖+ ‖µ‖ ‖η‖ ‖|x|εg0(x)‖L1
x
≤ C0(t) ‖µ‖ .

Substituting this estimate into (8.16), the resulting estimate into (8.15), and finally that
estimate into (8.14), yields the desired bound. �

9. The vanishing viscosity limit in the L∞-norm

In this section, we use the results from Section 7 and Section 8 to prove in Theorem 9.1
that the vanishing viscosity limit (see (V V ) in Section 1) holds in the L∞-norm of the density.
Throughout this section we make the assumptions in Remark 7.1. Our main result in this
section is Theorem 9.1:
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Theorem 9.1. Assume ρ0 ∈ C1,α(Rd) ∩ L2
N (Rd) for some α > 1, N > 1 + d/2, d ≥ 2

is compactly supported. Define µ as in (7.1), and let T be as in Theorem 4.5. Then for
t ∈ [0, T ], ν ≤ 1, and β ∈ (0, 1),

‖µ(t)‖L∞ ≤ C0(t)(νt)
2β

2β+d .

Theorem 9.1 follows easily from interpolation once we establish a modulus of continuity on
ρν that applies for all sufficiently small ν. Working as we are in Hölder spaces, it is natural
to obtain a bound on ρν in a Hölder space norm uniformly in ν. We do this in Theorem 9.2,
adapting the approach Hmidi and Keraani took in [12, 13] for the Navier-Stokes equations.

Theorem 9.2. Assume ρ0 ∈ Cβ(Rd) with β < 1 and d ≥ 2 is compactly supported and let T
be as in Theorem 4.5. Then ρν ∈ L∞(0, T ;Cβ(Rd)) and

‖ρν(t)‖Cβ ≤ C0(T )ee
C0(T )

(9.1)

for all t ∈ [0, T ], where C0(T ) depends on ‖ρ0‖Cβ and β.

Before proving Theorem 9.2 and then Theorem 9.1 we must make a few definitions, most
notably of the Littlewood-Paley operators.

Let S(Rd) denote the Schwartz space on Rd and let S′(Rd) denote the space of all tempered
distributions on Rd. It is classical that there exists two functions χ, φ ∈ S(Rd) with supp

χ̂ ⊂ {ξ ∈ Rd : |ξ| ≤ 5
6} and supp φ̂ ⊂ {ξ ∈ Rd : 3

5 ≤ |ξ| ≤
5
3}, such that, if for every j ≥ 0 we

set φj(x) = 2jdφ(2jx), then

χ̂+
∑
j≥0

φ̂j = χ̂+
∑
j≥0

φ̂(2−j ·) ≡ 1.

For f ∈ S′(Rd) and j ≥ −1, define the Littlewood-Paley operators ∆j by

∆jf =

{
χ ∗ f, j = −1
φj ∗ f, j ≥ 0.

We will make use of the following classical lemma of Bernstein. A proof of the lemma can
be found in Chapter 2 of [6]. Below, Ca,b(0) denotes the annulus with inner radius a and
outer radius b.

Lemma 9.3 (Bernstein’s Lemma). Let r1 and r2 satisfy 0 < r1 < r2 < ∞, and let p and q
satisfy 1 ≤ p ≤ q ≤ ∞. There exists a positive constant C such that for every integer k , if
u belongs to Lp(Rd), and supp û ⊂ Br1λ(0), then

sup
|α|=k

||∂αu||Lq ≤ Ckλk+d(
1
p
− 1
q
)||u||Lp . (9.2)

Furthermore, if supp û ⊂ Cr1λ,r2λ(0), then

C−kλk||u||Lp ≤ sup
|α|=k

||∂αu||Lp ≤ Ckλk||u||Lp . (9.3)

The following Littlewood-Paley definition of Holder spaces is equivalent to the classical
definition of Holder spaces when α is a positive non-integer (see Chapter 2 of [6]).

Definition 9.4. For α ∈ R, the space Cα∗ is the set of functions f such that

sup
j≥−1

2jα‖∆jf‖L∞ <∞.
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We set
‖f‖Cα∗ = sup

j≥−1
2jα‖∆jf‖L∞ .

When α is a positive non-integer, we will often write Cα in place of Cα∗ , in view of the
equivalence between the two spaces.

Proof of Theorem 9.2. This follows from Theorem 5.7 for ν = 0. So assume that ν > 0. That
the solution ρν to (GAGν) belongs in L∞(0, T ;Cβ(Rd)) for all β > 0 follows from standard
arguments; we show only the uniform control in viscosity of the Cβ-norm when β < 1.

This theorem is essentially proved in [12, 13] for divergence-free vector fields vν in the
more general setting of Besov spaces. We follow the proof from [13] below, with a slight
modification to account for the assumption that vν is not divergence-free in our setting. Our
modification relies on a commutator estimate established in Chapter 4 of [7].

As in the proof in [13], we apply the Littlewood-Paley operator ∆j to (GAGν), which gives

∂t∆jρ
ν + vν · ∇∆jρ

ν − ν∆∆jρ
ν = −[∆j ,v

ν · ∇]ρν + σ2∆j(ρ
ν)2.

We can apply the maximum principle (see, for example, Lemma 5 of [12]) to write

‖∆jρ
ν(t)‖L∞ ≤ ‖∆jρ0‖L∞ + C

∫ t

0

(
‖[∆j ,v

ν · ∇]ρν(s)‖L∞ + ‖∆j(ρ
ν(s))2‖L∞

)
ds.

Multiplying through by 2jβ and taking the supremum over j gives

‖ρν(t)‖Cβ ≤ ‖ρ0‖Cβ + C

∫ t

0

(
sup
j

2jβ‖[∆j ,v
ν · ∇]ρν(s)‖L∞ + ‖(ρν(s))2‖Cβ

)
ds.

≤ ‖ρ0‖Cβ + C

∫ t

0

(
sup
j

2jβ‖[∆j ,v
ν · ∇]ρν(s)‖L∞ + ‖ρν(s)‖L∞‖ρν(s)‖Cβ

)
ds,

(9.4)

where we used the estimate ‖(ρν)2‖Cβ ≤ C‖ρν‖L∞‖ρν‖Cβ to obtain the last inequality. To
bound the commutator on the right hand side in (9.4), we apply Lemma 9.6 below for the
case r = β ∈ (0, 1), which gives,

‖[∆j ,v
ν · ∇]ρν(s)‖L∞ ≤ C2−jβ‖∇vν(s)‖L∞‖ρν(s)‖Cβ . (9.5)

Substituting (9.5) into (9.4) and applying Lemma 1.2 (Grönwall’s lemma) gives

‖ρν‖L∞(0,T ;Cβ) ≤ CeCV (t)‖ρ0‖Cβ , (9.6)

where

V (t) =

∫ t

0
(‖∇vν(s)‖L∞ + ‖ρν(s)‖L∞) ds.

To complete the proof of Theorem 9.2, we apply Proposition 2.3.5 of [7] and write

‖∇vν(t)‖L∞ ≤
C

β
‖∇vν(t)‖C0

∗
log

(
e+
‖∇vν(t)‖Cβ
‖∇vν(t)‖C0

∗

)
.

Since x 7→ x log
(
e+ C

x

)
is increasing in x when C > 0, it follows from Lemma 9.5, the

embedding L∞ ↪→ C0
∗ , and the equivalence between Cβ and Cβ∗ when β ∈ (0, 1) that

‖∇vν(t)‖L∞ ≤
C

β
‖ρν‖L1∩L∞ log

(
e+
‖∇vν(t)‖Cβ
‖ρν‖L1∩L∞

)
≤ C

β
‖ρν‖L1∩L∞ log

(
e+
‖ρν(t)‖L1∩Cβ

‖ρν‖L1∩L∞

)
≤ C

β
C0(T ) log

(
e+
‖ρν(t)‖L1∩Cβ

C0(T )

)
,
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where we used Theorem 4.5 in the third inequality above. An application of 9.6 gives

‖∇vν(t)‖L∞ ≤ C0(T ) log
(
e+ CeCV (t)‖ρ0‖Cβ

)
≤ C0(T ) log

(
eCV (t) (e+ ‖ρ0‖Cβ )

)
= C0(T ) (V (t) + log (e+ ‖ρ0‖Cβ ))

= C0(T ) log (e+ ‖ρ0‖Cβ ) + C0(T )

∫ t

0
(‖∇vν(s)‖L∞ + ‖ρν(s)‖L∞) ds.

Lemma 1.2 (Grönwall’s lemma) and Theorem 4.5 imply that

‖∇vν(t)‖L∞ ≤ C0(T )eC0(T ).

Substituting this estimate into (9.6) gives (9.1). �

Proof of Theorem 9.1. Fix t < T , p > d, and β ∈ (0, 1). For fixed N ≥ 0 (to be chosen
later), we use Bernstein’s Lemma and the definition of the Holder space Cβ(Rd) as given in
Definition 9.4 to write

‖(ρν − ρ0)(t)‖L∞ ≤
N∑

j=−1
‖∆j(ρ

ν − ρ0)(t)‖L∞ +

∞∑
j=N+1

‖∆j(ρ
ν − ρ0)(t)‖L∞

≤ C
N∑

j=−1
2j

d
2 ‖∆j(ρ

ν − ρ0)(t)‖L2 +
∞∑

j=N+1

2−jβ2jβ‖∆j(ρ
ν − ρ0)(t)‖L∞

≤ C
N∑

j=−1
2j

d
2 ‖∆j(ρ

ν − ρ0)(t)‖L2 + C
∞∑

j=N+1

2−jβ(‖ρν(t)‖Cβ + ‖ρ0(t)‖Cβ )

≤ C2N
d
2 ‖(ρν − ρ0)(t)‖L2 + C0(t)2

−Nβ ,

(9.7)

where we applied Theorems 5.7 and 9.2 above to get the last inequality. By Theorems 7.3
and 8.1, for ν ≤ 1,

‖(ρν − ρ0)(t)‖L2 ≤ C0(t)tνe
C0(t).

Substituting this estimate into (9.7) gives

‖(ρν − ρ0)(t)‖L∞ ≤ C0(t)te
C0(t)ν2N

d
2 + C0(t)2

−Nβ.

Now set N = − 2
2β+d log2(νt). We conclude that

‖(ρν − ρ0)(t)‖L∞ ≤ C0(t)te
C0(t)(νt)

1− d
2β+d + C0(t)(νt)

2β
2α+d ≤ C0(t)e

C0(t)(νt)
2β

2β+d .

This completes the proof of Theorem 9.1. �

Above, we used the following lemmas.

Lemma 9.5. For all r ∈ R,

‖∇∇Φ ∗ ρ‖Cr∗ ≤ C(‖ρ‖L1 + ‖ρ‖Cr∗ ).

Proof. Let v = ∇Φ ∗ ρ. Then using the definition of Cr∗ as given in Definition 9.4, we have

‖∇v‖Cr∗ = sup
q≥−1

2qr ‖∆q∇v‖L∞ ≤ 2−r ‖∆−1∇v‖L∞ + sup
q≥0

2qr ‖∆q∇v‖L∞

≤ C ‖∆−1ρ‖L1 + C sup
q≥0

2qr ‖∆qρ‖L∞ ≤ C ‖ρ‖L1 + C ‖ρ‖Cr∗ .
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To obtain the second inequality above, we argued as in (3.6) of [25] when estimating the
low frequency term and applied a classical lemma to bound the high frequencies (see, for
example, Lemma 4.2 of [10]). This completes the proof. �

Lemma 9.6. Assume u is a vector field belonging to L∞(0, T ;Cα(Rd)) for every α > 0. Let
r > 0, and assume f belongs to L∞(0, T ;Cr(Rd)). For any function W (t) satisfying

W (t) ≥ max

{
‖∇u(t)‖L∞ ,

‖∇u(t)‖Cr−1

r − 1

}
,

the following estimate holds:

‖[u · ∇,∆j ]f‖L∞ ≤ C(r)2−jrW (t)‖f(t)‖Cr . (9.8)

Proof. The estimate (9.8) corresponds to (4.7) in [7], and is established in [7] as part of the
proof of Lemma 4.1.1. We refer the reader to [7] for details. �

10. Concluding Remarks

It is possible to obtain a velocity formulation of (GAGν), in analogy with the Navier-Stokes
and Euler equations. For any ν ≥ 0, we can write this in the form ∂tv

ν + vν · ∇vν +∇qν = ν∆vν ,
curl vν = 0,
vν(0) = v0,

where the “pressure” qν satisfies ∆qν = σ1(ρ
ν)2 − ∇vν · (∇vν)T . This velocity formulation

can be used to obtain the bounds on ‖w(t)‖ in Section 7 and ‖w̃(t)‖ in Section 8. Because
div w 6= 0, however, the pressure does not disappear in these bounds. This requires a great
deal of effort to properly bound the pressure so we took the shorter approach in Sections 7
and 8 leaving the elaboration of the velocity formulation to future work.
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